train.py 15.7 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import paddle
import numpy as np
import os
import paddle.nn as nn
import paddle.distributed as dist
dist.get_world_size()
dist.init_parallel_env()

from loss import build_loss, LossDistill, DMLLoss, KLJSLoss
from optimizer import create_optimizer
from data_loader import build_dataloader
from metric import create_metric
from mv3 import MobileNetV3_large_x0_5, distillmv3_large_x0_5, build_model
from config import preprocess
import time

from paddleslim.dygraph.quant import QAT
from slim.slim_quant import PACT, quant_config
from slim.slim_fpgm import prune_model
from utils import load_model


def _mkdir_if_not_exist(path, logger):
    """
    mkdir if not exists, ignore the exception when multiprocess mkdir together
    """
    if not os.path.exists(path):
        try:
            os.makedirs(path)
        except OSError as e:
            if e.errno == errno.EEXIST and os.path.isdir(path):
                logger.warning(
                    'be happy if some process has already created {}'.format(
                        path))
            else:
                raise OSError('Failed to mkdir {}'.format(path))


def save_model(model,
               optimizer,
               model_path,
               logger,
               is_best=False,
               prefix='ppocr',
               **kwargs):
    """
    save model to the target path
    """
    _mkdir_if_not_exist(model_path, logger)
    model_prefix = os.path.join(model_path, prefix)
    paddle.save(model.state_dict(), model_prefix + '.pdparams')
    if type(optimizer) is list:
        paddle.save(optimizer[0].state_dict(), model_prefix + '.pdopt')
        paddle.save(optimizer[1].state_dict(), model_prefix + "_1" + '.pdopt')

    else:
        paddle.save(optimizer.state_dict(), model_prefix + '.pdopt')

    # # save metric and config
    # with open(model_prefix + '.states', 'wb') as f:
    #     pickle.dump(kwargs, f, protocol=2)
    if is_best:
        logger.info('save best model is to {}'.format(model_prefix))
    else:
        logger.info("save model in {}".format(model_prefix))


def amp_scaler(config):
    if 'AMP' in config and config['AMP']['use_amp'] is True:
        AMP_RELATED_FLAGS_SETTING = {
            'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
            'FLAGS_max_inplace_grad_add': 8,
        }
        paddle.fluid.set_flags(AMP_RELATED_FLAGS_SETTING)
        scale_loss = config["AMP"].get("scale_loss", 1.0)
        use_dynamic_loss_scaling = config["AMP"].get("use_dynamic_loss_scaling",
                                                     False)
        scaler = paddle.amp.GradScaler(
            init_loss_scaling=scale_loss,
            use_dynamic_loss_scaling=use_dynamic_loss_scaling)
        return scaler
    else:
        return None


def set_seed(seed):
    paddle.seed(seed)
    np.random.seed(seed)


def train(config, scaler=None):
    EPOCH = config['epoch']
    topk = config['topk']

    batch_size = config['TRAIN']['batch_size']
    num_workers = config['TRAIN']['num_workers']
    train_loader = build_dataloader(
        'train', batch_size=batch_size, num_workers=num_workers)

    # build metric
    metric_func = create_metric

    # build model
    # model = MobileNetV3_large_x0_5(class_dim=100)
    model = build_model(config)

    # build_optimizer 
    optimizer, lr_scheduler = create_optimizer(
        config, parameter_list=model.parameters())

    # load model
    pre_best_model_dict = load_model(config, model, optimizer)
    if len(pre_best_model_dict) > 0:
        pre_str = 'The metric of loaded metric as follows {}'.format(', '.join(
            ['{}: {}'.format(k, v) for k, v in pre_best_model_dict.items()]))
        logger.info(pre_str)

    # about slim prune and quant
    if "quant_train" in config and config['quant_train'] is True:
        quanter = QAT(config=quant_config, act_preprocess=PACT)
        quanter.quantize(model)
    elif "prune_train" in config and config['prune_train'] is True:
        model = prune_model(model, [1, 3, 32, 32], 0.1)
    else:
        pass

    # distribution
    model.train()
    model = paddle.DataParallel(model)
    # build loss function
    loss_func = build_loss(config)

    data_num = len(train_loader)

    best_acc = {}
    for epoch in range(EPOCH):
        st = time.time()
        for idx, data in enumerate(train_loader):
            img_batch, label = data
            img_batch = paddle.transpose(img_batch, [0, 3, 1, 2])
            label = paddle.unsqueeze(label, -1)

            if scaler is not None:
                with paddle.amp.auto_cast():
                    outs = model(img_batch)
            else:
                outs = model(img_batch)

            # cal metric 
            acc = metric_func(outs, label)

            # cal loss
            avg_loss = loss_func(outs, label)

            if scaler is None:
                # backward
                avg_loss.backward()
                optimizer.step()
                optimizer.clear_grad()
            else:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)

            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()

            if idx % 10 == 0:
                et = time.time()
                strs = f"epoch: [{epoch}/{EPOCH}], iter: [{idx}/{data_num}], "
                strs += f"loss: {avg_loss.numpy()[0]}"
                strs += f", acc_topk1: {acc['top1'].numpy()[0]}, acc_top5: {acc['top5'].numpy()[0]}"
                strs += f", batch_time: {round(et-st, 4)} s"
                logger.info(strs)
                st = time.time()

        if epoch % 10 == 0:
            acc = eval(config, model)
            if len(best_acc) < 1 or acc['top5'].numpy()[0] > best_acc['top5']:
                best_acc = acc
                best_acc['epoch'] = epoch
                is_best = True
            else:
                is_best = False
            logger.info(
                f"The best acc: acc_topk1: {best_acc['top1'].numpy()[0]}, acc_top5: {best_acc['top5'].numpy()[0]}, best_epoch: {best_acc['epoch']}"
            )
            save_model(
                model,
                optimizer,
                config['save_model_dir'],
                logger,
                is_best,
                prefix="cls")


def train_distill(config, scaler=None):
    EPOCH = config['epoch']
    topk = config['topk']

    batch_size = config['TRAIN']['batch_size']
    num_workers = config['TRAIN']['num_workers']
    train_loader = build_dataloader(
        'train', batch_size=batch_size, num_workers=num_workers)

    # build metric
    metric_func = create_metric

    # model = distillmv3_large_x0_5(class_dim=100)
    model = build_model(config)

    # pact quant train
    if "quant_train" in config and config['quant_train'] is True:
        quanter = QAT(config=quant_config, act_preprocess=PACT)
        quanter.quantize(model)
    elif "prune_train" in config and config['prune_train'] is True:
        model = prune_model(model, [1, 3, 32, 32], 0.1)
    else:
        pass

    # build_optimizer 
    optimizer, lr_scheduler = create_optimizer(
        config, parameter_list=model.parameters())

    # load model
    pre_best_model_dict = load_model(config, model, optimizer)
    if len(pre_best_model_dict) > 0:
        pre_str = 'The metric of loaded metric as follows {}'.format(', '.join(
            ['{}: {}'.format(k, v) for k, v in pre_best_model_dict.items()]))
        logger.info(pre_str)

    model.train()
    model = paddle.DataParallel(model)

    # build loss function
    loss_func_distill = LossDistill(model_name_list=['student', 'student1'])
    loss_func_dml = DMLLoss(model_name_pairs=['student', 'student1'])
    loss_func_js = KLJSLoss(mode='js')

    data_num = len(train_loader)

    best_acc = {}
    for epoch in range(EPOCH):
        st = time.time()
        for idx, data in enumerate(train_loader):
            img_batch, label = data
            img_batch = paddle.transpose(img_batch, [0, 3, 1, 2])
            label = paddle.unsqueeze(label, -1)
            if scaler is not None:
                with paddle.amp.auto_cast():
                    outs = model(img_batch)
            else:
                outs = model(img_batch)

            # cal metric 
            acc = metric_func(outs['student'], label)

            # cal loss
            avg_loss = loss_func_distill(outs, label)['student'] + \
                       loss_func_distill(outs, label)['student1'] + \
                       loss_func_dml(outs, label)['student_student1']

            # backward
            if scaler is None:
                avg_loss.backward()
                optimizer.step()
                optimizer.clear_grad()
            else:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)

            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()

            if idx % 10 == 0:
                et = time.time()
                strs = f"epoch: [{epoch}/{EPOCH}], iter: [{idx}/{data_num}], "
                strs += f"loss: {avg_loss.numpy()[0]}"
                strs += f", acc_topk1: {acc['top1'].numpy()[0]}, acc_top5: {acc['top5'].numpy()[0]}"
                strs += f", batch_time: {round(et-st, 4)} s"
                logger.info(strs)
                st = time.time()

        if epoch % 10 == 0:
            acc = eval(config, model._layers.student)
            if len(best_acc) < 1 or acc['top5'].numpy()[0] > best_acc['top5']:
                best_acc = acc
                best_acc['epoch'] = epoch
                is_best = True
            else:
                is_best = False
            logger.info(
                f"The best acc: acc_topk1: {best_acc['top1'].numpy()[0]}, acc_top5: {best_acc['top5'].numpy()[0]}, best_epoch: {best_acc['epoch']}"
            )

            save_model(
                model,
                optimizer,
                config['save_model_dir'],
                logger,
                is_best,
                prefix="cls_distill")


def train_distill_multiopt(config, scaler=None):
    EPOCH = config['epoch']
    topk = config['topk']

    batch_size = config['TRAIN']['batch_size']
    num_workers = config['TRAIN']['num_workers']
    train_loader = build_dataloader(
        'train', batch_size=batch_size, num_workers=num_workers)

    # build metric
    metric_func = create_metric

    # model = distillmv3_large_x0_5(class_dim=100)
    model = build_model(config)

    # build_optimizer 
    optimizer, lr_scheduler = create_optimizer(
        config, parameter_list=model.student.parameters())
    optimizer1, lr_scheduler1 = create_optimizer(
        config, parameter_list=model.student1.parameters())

    # load model
    pre_best_model_dict = load_model(config, model, optimizer)
    if len(pre_best_model_dict) > 0:
        pre_str = 'The metric of loaded metric as follows {}'.format(', '.join(
            ['{}: {}'.format(k, v) for k, v in pre_best_model_dict.items()]))
        logger.info(pre_str)

    # quant train
    if "quant_train" in config and config['quant_train'] is True:
        quanter = QAT(config=quant_config, act_preprocess=PACT)
        quanter.quantize(model)
    elif "prune_train" in config and config['prune_train'] is True:
        model = prune_model(model, [1, 3, 32, 32], 0.1)
    else:
        pass

    model.train()

    model = paddle.DataParallel(model)

    # build loss function
    loss_func_distill = LossDistill(model_name_list=['student', 'student1'])
    loss_func_dml = DMLLoss(model_name_pairs=['student', 'student1'])
    loss_func_js = KLJSLoss(mode='js')

    data_num = len(train_loader)
    best_acc = {}
    for epoch in range(EPOCH):
        st = time.time()
        for idx, data in enumerate(train_loader):
            img_batch, label = data
            img_batch = paddle.transpose(img_batch, [0, 3, 1, 2])
            label = paddle.unsqueeze(label, -1)

            if scaler is not None:
                with paddle.amp.auto_cast():
                    outs = model(img_batch)
            else:
                outs = model(img_batch)

            # cal metric 
            acc = metric_func(outs['student'], label)

            # cal loss
            avg_loss = loss_func_distill(outs,
                                         label)['student'] + loss_func_dml(
                                             outs, label)['student_student1']
            avg_loss1 = loss_func_distill(outs,
                                          label)['student1'] + loss_func_dml(
                                              outs, label)['student_student1']

            if scaler is None:
                # backward
                avg_loss.backward(retain_graph=True)
                optimizer.step()
                optimizer.clear_grad()

                avg_loss1.backward()
                optimizer1.step()
                optimizer1.clear_grad()
            else:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)

                scaled_avg_loss = scaler.scale(avg_loss1)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer1, scaled_avg_loss)

            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
            if not isinstance(lr_scheduler1, float):
                lr_scheduler1.step()

            if idx % 10 == 0:
                et = time.time()
                strs = f"epoch: [{epoch}/{EPOCH}], iter: [{idx}/{data_num}], "
                strs += f"loss: {avg_loss.numpy()[0]}, loss1: {avg_loss1.numpy()[0]}"
                strs += f", acc_topk1: {acc['top1'].numpy()[0]}, acc_top5: {acc['top5'].numpy()[0]}"
                strs += f", batch_time: {round(et-st, 4)} s"
                logger.info(strs)
                st = time.time()

        if epoch % 10 == 0:
            acc = eval(config, model._layers.student)
            if len(best_acc) < 1 or acc['top5'].numpy()[0] > best_acc['top5']:
                best_acc = acc
                best_acc['epoch'] = epoch
                is_best = True
            else:
                is_best = False
            logger.info(
                f"The best acc: acc_topk1: {best_acc['top1'].numpy()[0]}, acc_top5: {best_acc['top5'].numpy()[0]}, best_epoch: {best_acc['epoch']}"
            )
            save_model(
                model, [optimizer, optimizer1],
                config['save_model_dir'],
                logger,
                is_best,
                prefix="cls_distill_multiopt")


def eval(config, model):
    batch_size = config['VALID']['batch_size']
    num_workers = config['VALID']['num_workers']
    valid_loader = build_dataloader(
        'test', batch_size=batch_size, num_workers=num_workers)

    # build metric
    metric_func = create_metric

    outs = []
    labels = []
    for idx, data in enumerate(valid_loader):
        img_batch, label = data
        img_batch = paddle.transpose(img_batch, [0, 3, 1, 2])
        label = paddle.unsqueeze(label, -1)
        out = model(img_batch)

        outs.append(out)
        labels.append(label)

    outs = paddle.concat(outs, axis=0)
    labels = paddle.concat(labels, axis=0)
    acc = metric_func(outs, labels)

    strs = f"The metric are as follows: acc_topk1: {acc['top1'].numpy()[0]}, acc_top5: {acc['top5'].numpy()[0]}"
    logger.info(strs)
    return acc


if __name__ == "__main__":

    config, logger = preprocess(is_train=False)

    # AMP scaler
    scaler = amp_scaler(config)

    model_type = config['model_type']

    if model_type == "cls":
        train(config)
    elif model_type == "cls_distill":
        train_distill(config)
    elif model_type == "cls_distill_multiopt":
        train_distill_multiopt(config)
    else:
        raise ValueError("model_type should be one of ['']")