optimizer.py 9.86 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import sys
import math
from paddle.optimizer.lr import LinearWarmup
from paddle.optimizer.lr import PiecewiseDecay
from paddle.optimizer.lr import CosineAnnealingDecay
from paddle.optimizer.lr import ExponentialDecay
import paddle
import paddle.regularizer as regularizer
from copy import deepcopy


class Cosine(CosineAnnealingDecay):
    """
    Cosine learning rate decay
    lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1)
    Args:
        lr(float): initial learning rate
        step_each_epoch(int): steps each epoch
        epochs(int): total training epochs
    """

    def __init__(self, lr, step_each_epoch, epochs, **kwargs):
        super(Cosine, self).__init__(
            learning_rate=lr,
            T_max=step_each_epoch * epochs, )

        self.update_specified = False


class Piecewise(PiecewiseDecay):
    """
    Piecewise learning rate decay
    Args:
        lr(float): initial learning rate
        step_each_epoch(int): steps each epoch
        decay_epochs(list): piecewise decay epochs
        gamma(float): decay factor
    """

    def __init__(self, lr, step_each_epoch, decay_epochs, gamma=0.1, **kwargs):
        boundaries = [step_each_epoch * e for e in decay_epochs]
        lr_values = [lr * (gamma**i) for i in range(len(boundaries) + 1)]
        super(Piecewise, self).__init__(boundaries=boundaries, values=lr_values)

        self.update_specified = False


class CosineWarmup(LinearWarmup):
    """
    Cosine learning rate decay with warmup
    [0, warmup_epoch): linear warmup
    [warmup_epoch, epochs): cosine decay
    Args:
        lr(float): initial learning rate
        step_each_epoch(int): steps each epoch
        epochs(int): total training epochs
        warmup_epoch(int): epoch num of warmup
    """

    def __init__(self, lr, step_each_epoch, epochs, warmup_epoch=5, **kwargs):
        assert epochs > warmup_epoch, "total epoch({}) should be larger than warmup_epoch({}) in CosineWarmup.".format(
            epochs, warmup_epoch)
        warmup_step = warmup_epoch * step_each_epoch
        start_lr = 0.0
        end_lr = lr
        lr_sch = Cosine(lr, step_each_epoch, epochs - warmup_epoch)

        super(CosineWarmup, self).__init__(
            learning_rate=lr_sch,
            warmup_steps=warmup_step,
            start_lr=start_lr,
            end_lr=end_lr)

        self.update_specified = False


class ExponentialWarmup(LinearWarmup):
    """
    Exponential learning rate decay with warmup
    [0, warmup_epoch): linear warmup
    [warmup_epoch, epochs): Exponential decay
    Args:
        lr(float): initial learning rate
        step_each_epoch(int): steps each epoch
        decay_epochs(float): decay epochs
        decay_rate(float): decay rate
        warmup_epoch(int): epoch num of warmup
    """

    def __init__(self,
                 lr,
                 step_each_epoch,
                 decay_epochs=2.4,
                 decay_rate=0.97,
                 warmup_epoch=5,
                 **kwargs):
        warmup_step = warmup_epoch * step_each_epoch
        start_lr = 0.0
        end_lr = lr
        lr_sch = ExponentialDecay(lr, decay_rate)

        super(ExponentialWarmup, self).__init__(
            learning_rate=lr_sch,
            warmup_steps=warmup_step,
            start_lr=start_lr,
            end_lr=end_lr)

        # NOTE: hac method to update exponential lr scheduler
        self.update_specified = True
        self.update_start_step = warmup_step
        self.update_step_interval = int(decay_epochs * step_each_epoch)
        self.step_each_epoch = step_each_epoch


class LearningRateBuilder():
    """
    Build learning rate variable
    https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/layers_cn.html
    Args:
        function(str): class name of learning rate
        params(dict): parameters used for init the class
    """

    def __init__(self,
                 function='Linear',
                 params={'lr': 0.1,
                         'steps': 100,
                         'end_lr': 0.0}):
        self.function = function
        self.params = params

    def __call__(self):
        mod = sys.modules[__name__]
        lr = getattr(mod, self.function)(**self.params)
        return lr


class L1Decay(object):
    """
    L1 Weight Decay Regularization, which encourages the weights to be sparse.
    Args:
        factor(float): regularization coeff. Default:0.0.
    """

    def __init__(self, factor=0.0):
        super(L1Decay, self).__init__()
        self.factor = factor

    def __call__(self):
        reg = regularizer.L1Decay(self.factor)
        return reg


class L2Decay(object):
    """
    L2 Weight Decay Regularization, which encourages the weights to be sparse.
    Args:
        factor(float): regularization coeff. Default:0.0.
    """

    def __init__(self, factor=0.0):
        super(L2Decay, self).__init__()
        self.factor = factor

    def __call__(self):
        reg = regularizer.L2Decay(self.factor)
        return reg


class Momentum(object):
    """
    Simple Momentum optimizer with velocity state.
    Args:
        learning_rate (float|Variable) - The learning rate used to update parameters.
            Can be a float value or a Variable with one float value as data element.
        momentum (float) - Momentum factor.
        regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
    """

    def __init__(self,
                 learning_rate,
                 momentum,
                 parameter_list=None,
                 regularization=None,
                 **args):
        super(Momentum, self).__init__()
        self.learning_rate = learning_rate
        self.momentum = momentum
        self.parameter_list = parameter_list
        self.regularization = regularization

    def __call__(self):
        opt = paddle.optimizer.Momentum(
            learning_rate=self.learning_rate,
            momentum=self.momentum,
            parameters=self.parameter_list,
            weight_decay=self.regularization)
        return opt


class RMSProp(object):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method.
    Args:
        learning_rate (float|Variable) - The learning rate used to update parameters.
            Can be a float value or a Variable with one float value as data element.
        momentum (float) - Momentum factor.
        rho (float) - rho value in equation.
        epsilon (float) - avoid division by zero, default is 1e-6.
        regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
    """

    def __init__(self,
                 learning_rate,
                 momentum,
                 rho=0.95,
                 epsilon=1e-6,
                 parameter_list=None,
                 regularization=None,
                 **args):
        super(RMSProp, self).__init__()
        self.learning_rate = learning_rate
        self.momentum = momentum
        self.rho = rho
        self.epsilon = epsilon
        self.parameter_list = parameter_list
        self.regularization = regularization

    def __call__(self):
        opt = paddle.optimizer.RMSProp(
            learning_rate=self.learning_rate,
            momentum=self.momentum,
            rho=self.rho,
            epsilon=self.epsilon,
            parameters=self.parameter_list,
            weight_decay=self.regularization)
        return opt


class OptimizerBuilder(object):
    """
    Build optimizer
    Args:
        function(str): optimizer name of learning rate
        params(dict): parameters used for init the class
        regularizer (dict): parameters used for create regularization
    """

    def __init__(self,
                 function='Momentum',
                 params={'momentum': 0.9},
                 regularizer=None):
        self.function = function
        self.params = params
        # create regularizer
        if regularizer is not None:
            mod = sys.modules[__name__]
            reg_func = regularizer['function'] + 'Decay'
            del regularizer['function']
            reg = getattr(mod, reg_func)(**regularizer)()
            self.params['regularization'] = reg

    def __call__(self, learning_rate, parameter_list=None):
        mod = sys.modules[__name__]
        opt = getattr(mod, self.function)
        return opt(learning_rate=learning_rate,
                   parameter_list=parameter_list,
                   **self.params)()


def create_optimizer(config, parameter_list=None):
    """
    Create an optimizer using config, usually including
    learning rate and regularization.

    Args:
        config(dict):  such as
        {
            'LEARNING_RATE':
                {'function': 'Cosine',
                 'params': {'lr': 0.1}
                },
            'OPTIMIZER':
                {'function': 'Momentum',
                 'params':{'momentum': 0.9},
                 'regularizer':
                    {'function': 'L2', 'factor': 0.0001}
                }
        }

    Returns:
        an optimizer instance
    """
    # create learning_rate instance
    lr_config = config['LEARNING_RATE']
    lr_config['params'].update({
        'epochs': config['epoch'],
        'step_each_epoch':
        config['total_images'] // config['TRAIN']['batch_size'],
    })
    lr = LearningRateBuilder(**lr_config)()

    # create optimizer instance
    opt_config = deepcopy(config['OPTIMIZER'])

    opt = OptimizerBuilder(**opt_config)
    return opt(lr, parameter_list), lr


def create_multi_optimizer(config, parameter_list=None):
    """
    """
    # create learning_rate instance
    lr_config = config['LEARNING_RATE']
    lr_config['params'].update({
        'epochs': config['epoch'],
        'step_each_epoch':
        config['total_images'] // config['TRAIN']['batch_size'],
    })
    lr = LearningRateBuilder(**lr_config)()

    # create optimizer instance
    opt_config = deepcopy.copy(config['OPTIMIZER'])
    opt = OptimizerBuilder(**opt_config)
    return opt(lr, parameter_list), lr