"git@developer.sourcefind.cn:modelzoo/rtmdet_mmcv.git" did not exist on "1c37dbb64747777c507773f0016a190c4a04c8cf"
postprocess_op.cpp 9.42 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/postprocess_op.h>

namespace PaddleOCR {

littletomatodonkey's avatar
littletomatodonkey committed
19
20
void PostProcessor::GetContourArea(const std::vector<std::vector<float>> &box,
                                   float unclip_ratio, float &distance) {
littletomatodonkey's avatar
littletomatodonkey committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
  int pts_num = 4;
  float area = 0.0f;
  float dist = 0.0f;
  for (int i = 0; i < pts_num; i++) {
    area += box[i][0] * box[(i + 1) % pts_num][1] -
            box[i][1] * box[(i + 1) % pts_num][0];
    dist += sqrtf((box[i][0] - box[(i + 1) % pts_num][0]) *
                      (box[i][0] - box[(i + 1) % pts_num][0]) +
                  (box[i][1] - box[(i + 1) % pts_num][1]) *
                      (box[i][1] - box[(i + 1) % pts_num][1]));
  }
  area = fabs(float(area / 2.0));

  distance = area * unclip_ratio / dist;
}

littletomatodonkey's avatar
littletomatodonkey committed
37
38
cv::RotatedRect PostProcessor::UnClip(std::vector<std::vector<float>> box,
                                      const float &unclip_ratio) {
littletomatodonkey's avatar
littletomatodonkey committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
  float distance = 1.0;

  GetContourArea(box, unclip_ratio, distance);

  ClipperLib::ClipperOffset offset;
  ClipperLib::Path p;
  p << ClipperLib::IntPoint(int(box[0][0]), int(box[0][1]))
    << ClipperLib::IntPoint(int(box[1][0]), int(box[1][1]))
    << ClipperLib::IntPoint(int(box[2][0]), int(box[2][1]))
    << ClipperLib::IntPoint(int(box[3][0]), int(box[3][1]));
  offset.AddPath(p, ClipperLib::jtRound, ClipperLib::etClosedPolygon);

  ClipperLib::Paths soln;
  offset.Execute(soln, distance);
  std::vector<cv::Point2f> points;

  for (int j = 0; j < soln.size(); j++) {
    for (int i = 0; i < soln[soln.size() - 1].size(); i++) {
      points.emplace_back(soln[j][i].X, soln[j][i].Y);
    }
  }
60
61
62
63
64
65
  cv::RotatedRect res;
  if (points.size() <= 0) {
    res = cv::RotatedRect(cv::Point2f(0, 0), cv::Size2f(1, 1), 0);
  } else {
    res = cv::minAreaRect(points);
  }
littletomatodonkey's avatar
littletomatodonkey committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
  return res;
}

float **PostProcessor::Mat2Vec(cv::Mat mat) {
  auto **array = new float *[mat.rows];
  for (int i = 0; i < mat.rows; ++i)
    array[i] = new float[mat.cols];
  for (int i = 0; i < mat.rows; ++i) {
    for (int j = 0; j < mat.cols; ++j) {
      array[i][j] = mat.at<float>(i, j);
    }
  }

  return array;
}

std::vector<std::vector<int>>
littletomatodonkey's avatar
littletomatodonkey committed
83
PostProcessor::OrderPointsClockwise(std::vector<std::vector<int>> pts) {
littletomatodonkey's avatar
littletomatodonkey committed
84
  std::vector<std::vector<int>> box = pts;
littletomatodonkey's avatar
littletomatodonkey committed
85
86
  std::sort(box.begin(), box.end(), XsortInt);

littletomatodonkey's avatar
littletomatodonkey committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
  std::vector<std::vector<int>> leftmost = {box[0], box[1]};
  std::vector<std::vector<int>> rightmost = {box[2], box[3]};

  if (leftmost[0][1] > leftmost[1][1])
    std::swap(leftmost[0], leftmost[1]);

  if (rightmost[0][1] > rightmost[1][1])
    std::swap(rightmost[0], rightmost[1]);

  std::vector<std::vector<int>> rect = {leftmost[0], rightmost[0], rightmost[1],
                                        leftmost[1]};
  return rect;
}

littletomatodonkey's avatar
littletomatodonkey committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
std::vector<std::vector<float>> PostProcessor::Mat2Vector(cv::Mat mat) {
  std::vector<std::vector<float>> img_vec;
  std::vector<float> tmp;

  for (int i = 0; i < mat.rows; ++i) {
    tmp.clear();
    for (int j = 0; j < mat.cols; ++j) {
      tmp.push_back(mat.at<float>(i, j));
    }
    img_vec.push_back(tmp);
  }
  return img_vec;
}

bool PostProcessor::XsortFp32(std::vector<float> a, std::vector<float> b) {
  if (a[0] != b[0])
    return a[0] < b[0];
  return false;
}

bool PostProcessor::XsortInt(std::vector<int> a, std::vector<int> b) {
  if (a[0] != b[0])
    return a[0] < b[0];
  return false;
}

std::vector<std::vector<float>> PostProcessor::GetMiniBoxes(cv::RotatedRect box,
                                                            float &ssid) {
  ssid = std::max(box.size.width, box.size.height);
littletomatodonkey's avatar
littletomatodonkey committed
130
131
132
133

  cv::Mat points;
  cv::boxPoints(box, points);

littletomatodonkey's avatar
littletomatodonkey committed
134
135
136
137
138
  auto array = Mat2Vector(points);
  std::sort(array.begin(), array.end(), XsortFp32);

  std::vector<float> idx1 = array[0], idx2 = array[1], idx3 = array[2],
                     idx4 = array[3];
littletomatodonkey's avatar
littletomatodonkey committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
  if (array[3][1] <= array[2][1]) {
    idx2 = array[3];
    idx3 = array[2];
  } else {
    idx2 = array[2];
    idx3 = array[3];
  }
  if (array[1][1] <= array[0][1]) {
    idx1 = array[1];
    idx4 = array[0];
  } else {
    idx1 = array[0];
    idx4 = array[1];
  }

  array[0] = idx1;
  array[1] = idx2;
  array[2] = idx3;
  array[3] = idx4;

  return array;
}

littletomatodonkey's avatar
littletomatodonkey committed
162
163
float PostProcessor::BoxScoreFast(std::vector<std::vector<float>> box_array,
                                  cv::Mat pred) {
littletomatodonkey's avatar
littletomatodonkey committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  auto array = box_array;
  int width = pred.cols;
  int height = pred.rows;

  float box_x[4] = {array[0][0], array[1][0], array[2][0], array[3][0]};
  float box_y[4] = {array[0][1], array[1][1], array[2][1], array[3][1]};

  int xmin = clamp(int(std::floor(*(std::min_element(box_x, box_x + 4)))), 0,
                   width - 1);
  int xmax = clamp(int(std::ceil(*(std::max_element(box_x, box_x + 4)))), 0,
                   width - 1);
  int ymin = clamp(int(std::floor(*(std::min_element(box_y, box_y + 4)))), 0,
                   height - 1);
  int ymax = clamp(int(std::ceil(*(std::max_element(box_y, box_y + 4)))), 0,
                   height - 1);

  cv::Mat mask;
  mask = cv::Mat::zeros(ymax - ymin + 1, xmax - xmin + 1, CV_8UC1);

  cv::Point root_point[4];
  root_point[0] = cv::Point(int(array[0][0]) - xmin, int(array[0][1]) - ymin);
  root_point[1] = cv::Point(int(array[1][0]) - xmin, int(array[1][1]) - ymin);
  root_point[2] = cv::Point(int(array[2][0]) - xmin, int(array[2][1]) - ymin);
  root_point[3] = cv::Point(int(array[3][0]) - xmin, int(array[3][1]) - ymin);
  const cv::Point *ppt[1] = {root_point};
  int npt[] = {4};
  cv::fillPoly(mask, ppt, npt, 1, cv::Scalar(1));

  cv::Mat croppedImg;
  pred(cv::Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1))
      .copyTo(croppedImg);

  auto score = cv::mean(croppedImg, mask)[0];
  return score;
}

std::vector<std::vector<std::vector<int>>>
littletomatodonkey's avatar
littletomatodonkey committed
201
202
203
PostProcessor::BoxesFromBitmap(const cv::Mat pred, const cv::Mat bitmap,
                               const float &box_thresh,
                               const float &det_db_unclip_ratio) {
littletomatodonkey's avatar
littletomatodonkey committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
  const int min_size = 3;
  const int max_candidates = 1000;

  int width = bitmap.cols;
  int height = bitmap.rows;

  std::vector<std::vector<cv::Point>> contours;
  std::vector<cv::Vec4i> hierarchy;

  cv::findContours(bitmap, contours, hierarchy, cv::RETR_LIST,
                   cv::CHAIN_APPROX_SIMPLE);

  int num_contours =
      contours.size() >= max_candidates ? max_candidates : contours.size();

  std::vector<std::vector<std::vector<int>>> boxes;

  for (int _i = 0; _i < num_contours; _i++) {
222
223
224
    if (contours[_i].size() <= 0) {
      continue;
    }
littletomatodonkey's avatar
littletomatodonkey committed
225
226
    float ssid;
    cv::RotatedRect box = cv::minAreaRect(contours[_i]);
littletomatodonkey's avatar
littletomatodonkey committed
227
    auto array = GetMiniBoxes(box, ssid);
littletomatodonkey's avatar
littletomatodonkey committed
228
229
230
231
232
233
234
235
236

    auto box_for_unclip = array;
    // end get_mini_box

    if (ssid < min_size) {
      continue;
    }

    float score;
littletomatodonkey's avatar
littletomatodonkey committed
237
    score = BoxScoreFast(array, pred);
littletomatodonkey's avatar
littletomatodonkey committed
238
239
240
241
    if (score < box_thresh)
      continue;

    // start for unclip
littletomatodonkey's avatar
littletomatodonkey committed
242
    cv::RotatedRect points = UnClip(box_for_unclip, det_db_unclip_ratio);
243
244
245
    if (points.size.height < 1.001 && points.size.width < 1.001) {
      continue;
    }
littletomatodonkey's avatar
littletomatodonkey committed
246
247
248
    // end for unclip

    cv::RotatedRect clipbox = points;
littletomatodonkey's avatar
littletomatodonkey committed
249
    auto cliparray = GetMiniBoxes(clipbox, ssid);
littletomatodonkey's avatar
littletomatodonkey committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

    if (ssid < min_size + 2)
      continue;

    int dest_width = pred.cols;
    int dest_height = pred.rows;
    std::vector<std::vector<int>> intcliparray;

    for (int num_pt = 0; num_pt < 4; num_pt++) {
      std::vector<int> a{int(clampf(roundf(cliparray[num_pt][0] / float(width) *
                                           float(dest_width)),
                                    0, float(dest_width))),
                         int(clampf(roundf(cliparray[num_pt][1] /
                                           float(height) * float(dest_height)),
                                    0, float(dest_height)))};
      intcliparray.push_back(a);
    }
    boxes.push_back(intcliparray);

  } // end for
  return boxes;
}

littletomatodonkey's avatar
littletomatodonkey committed
273
274
275
std::vector<std::vector<std::vector<int>>>
PostProcessor::FilterTagDetRes(std::vector<std::vector<std::vector<int>>> boxes,
                               float ratio_h, float ratio_w, cv::Mat srcimg) {
littletomatodonkey's avatar
littletomatodonkey committed
276
277
278
279
280
  int oriimg_h = srcimg.rows;
  int oriimg_w = srcimg.cols;

  std::vector<std::vector<std::vector<int>>> root_points;
  for (int n = 0; n < boxes.size(); n++) {
littletomatodonkey's avatar
littletomatodonkey committed
281
    boxes[n] = OrderPointsClockwise(boxes[n]);
littletomatodonkey's avatar
littletomatodonkey committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    for (int m = 0; m < boxes[0].size(); m++) {
      boxes[n][m][0] /= ratio_w;
      boxes[n][m][1] /= ratio_h;

      boxes[n][m][0] = int(_min(_max(boxes[n][m][0], 0), oriimg_w - 1));
      boxes[n][m][1] = int(_min(_max(boxes[n][m][1], 0), oriimg_h - 1));
    }
  }

  for (int n = 0; n < boxes.size(); n++) {
    int rect_width, rect_height;
    rect_width = int(sqrt(pow(boxes[n][0][0] - boxes[n][1][0], 2) +
                          pow(boxes[n][0][1] - boxes[n][1][1], 2)));
    rect_height = int(sqrt(pow(boxes[n][0][0] - boxes[n][3][0], 2) +
                           pow(boxes[n][0][1] - boxes[n][3][1], 2)));
    if (rect_width <= 10 || rect_height <= 10)
      continue;
    root_points.push_back(boxes[n]);
  }
  return root_points;
}

} // namespace PaddleOCR