eval_ser.py 5.66 KB
Newer Older
zhoujun's avatar
zhoujun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

import random
import time
import copy
import logging

import argparse
import paddle
import numpy as np
from seqeval.metrics import classification_report, f1_score, precision_score, recall_score
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
zhoujun's avatar
zhoujun committed
32
33
from paddlenlp.transformers import LayoutLMModel, LayoutLMTokenizer, LayoutLMForTokenClassification

zhoujun's avatar
zhoujun committed
34
from xfun import XFUNDataset
zhoujun's avatar
zhoujun committed
35
from losses import SERLoss
36
from utils import parse_args, get_bio_label_maps, print_arguments
zhoujun's avatar
zhoujun committed
37
38
39

from ppocr.utils.logging import get_logger

zhoujun's avatar
zhoujun committed
40
41
42
43
44
45
46
MODELS = {
    'LayoutXLM':
    (LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForTokenClassification),
    'LayoutLM':
    (LayoutLMTokenizer, LayoutLMModel, LayoutLMForTokenClassification)
}

zhoujun's avatar
zhoujun committed
47
48
49
50
51
52
53
54

def eval(args):
    logger = get_logger()
    print_arguments(args, logger)

    label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
    pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index

zhoujun's avatar
zhoujun committed
55
56
57
    tokenizer_class, base_model_class, model_class = MODELS[args.ser_model_type]
    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
    model = model_class.from_pretrained(args.model_name_or_path)
zhoujun's avatar
zhoujun committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

    eval_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.eval_data_dir,
        label_path=args.eval_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        pad_token_label_id=pad_token_label_id,
        contains_re=False,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    eval_dataloader = paddle.io.DataLoader(
        eval_dataset,
        batch_size=args.per_gpu_eval_batch_size,
WenmuZhou's avatar
WenmuZhou committed
74
        num_workers=args.num_workers,
zhoujun's avatar
zhoujun committed
75
76
77
        use_shared_memory=True,
        collate_fn=None, )

zhoujun's avatar
zhoujun committed
78
79
80
81
82
    loss_class = SERLoss(len(label2id_map))

    results, _ = evaluate(args, model, tokenizer, loss_class, eval_dataloader,
                          label2id_map, id2label_map, pad_token_label_id,
                          logger)
zhoujun's avatar
zhoujun committed
83
84
85
86
87
88
89

    logger.info(results)


def evaluate(args,
             model,
             tokenizer,
zhoujun's avatar
zhoujun committed
90
             loss_class,
zhoujun's avatar
zhoujun committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
             eval_dataloader,
             label2id_map,
             id2label_map,
             pad_token_label_id,
             logger,
             prefix=""):

    eval_loss = 0.0
    nb_eval_steps = 0
    preds = None
    out_label_ids = None
    model.eval()
    for idx, batch in enumerate(eval_dataloader):
        with paddle.no_grad():
zhoujun's avatar
zhoujun committed
105
106
107
108
            if args.ser_model_type == 'LayoutLM':
                if 'image' in batch:
                    batch.pop('image')
            labels = batch.pop('labels')
zhoujun's avatar
zhoujun committed
109
            outputs = model(**batch)
zhoujun's avatar
zhoujun committed
110
111
112
            if args.ser_model_type == 'LayoutXLM':
                outputs = outputs[0]
            loss = loss_class(labels, outputs, batch['attention_mask'])
zhoujun's avatar
zhoujun committed
113

zhoujun's avatar
zhoujun committed
114
            loss = loss.mean()
zhoujun's avatar
zhoujun committed
115
116
117

            if paddle.distributed.get_rank() == 0:
                logger.info("[Eval]process: {}/{}, loss: {:.5f}".format(
zhoujun's avatar
zhoujun committed
118
                    idx, len(eval_dataloader), loss.numpy()[0]))
zhoujun's avatar
zhoujun committed
119

zhoujun's avatar
zhoujun committed
120
            eval_loss += loss.item()
zhoujun's avatar
zhoujun committed
121
122
        nb_eval_steps += 1
        if preds is None:
zhoujun's avatar
zhoujun committed
123
124
            preds = outputs.numpy()
            out_label_ids = labels.numpy()
zhoujun's avatar
zhoujun committed
125
        else:
zhoujun's avatar
zhoujun committed
126
127
            preds = np.append(preds, outputs.numpy(), axis=0)
            out_label_ids = np.append(out_label_ids, labels.numpy(), axis=0)
zhoujun's avatar
zhoujun committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

    eval_loss = eval_loss / nb_eval_steps
    preds = np.argmax(preds, axis=2)

    # label_map = {i: label.upper() for i, label in enumerate(labels)}

    out_label_list = [[] for _ in range(out_label_ids.shape[0])]
    preds_list = [[] for _ in range(out_label_ids.shape[0])]

    for i in range(out_label_ids.shape[0]):
        for j in range(out_label_ids.shape[1]):
            if out_label_ids[i, j] != pad_token_label_id:
                out_label_list[i].append(id2label_map[out_label_ids[i][j]])
                preds_list[i].append(id2label_map[preds[i][j]])

    results = {
        "loss": eval_loss,
        "precision": precision_score(out_label_list, preds_list),
        "recall": recall_score(out_label_list, preds_list),
        "f1": f1_score(out_label_list, preds_list),
    }

WenmuZhou's avatar
WenmuZhou committed
150
151
152
    with open(
            os.path.join(args.output_dir, "test_gt.txt"), "w",
            encoding='utf-8') as fout:
zhoujun's avatar
zhoujun committed
153
154
155
156
        for lbl in out_label_list:
            for l in lbl:
                fout.write(l + "\t")
            fout.write("\n")
WenmuZhou's avatar
WenmuZhou committed
157
158
159
    with open(
            os.path.join(args.output_dir, "test_pred.txt"), "w",
            encoding='utf-8') as fout:
zhoujun's avatar
zhoujun committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        for lbl in preds_list:
            for l in lbl:
                fout.write(l + "\t")
            fout.write("\n")

    report = classification_report(out_label_list, preds_list)
    logger.info("\n" + report)

    logger.info("***** Eval results %s *****", prefix)
    for key in sorted(results.keys()):
        logger.info("  %s = %s", key, str(results[key]))
    model.train()
    return results, preds_list


if __name__ == "__main__":
    args = parse_args()
    eval(args)