extract_textpoint.py 10.7 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Jethong's avatar
Jethong committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Jethong's avatar
Jethong committed
14
15
16
17
18
19
20
21
"""Contains various CTC decoders."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import cv2
import numpy as np
from itertools import groupby
Jethong's avatar
Jethong committed
22
from cv2.ximgproc import thinning as thin
Jethong's avatar
Jethong committed
23
24


Jethong's avatar
Jethong committed
25
26
27
28
29
30
31
32
33
34
35
def get_dict(character_dict_path):
    character_str = ""
    with open(character_dict_path, "rb") as fin:
        lines = fin.readlines()
        for line in lines:
            line = line.decode('utf-8').strip("\n").strip("\r\n")
            character_str += line
        dict_character = list(character_str)
    return dict_character


Jethong's avatar
Jethong committed
36
def instance_ctc_greedy_decoder(gather_info, logits_map, pts_num=4):
Jethong's avatar
Jethong committed
37
38
    _, _, C = logits_map.shape
    ys, xs = zip(*gather_info)
Jethong's avatar
Jethong committed
39
40
41
42
43
44
    logits_seq = logits_map[list(ys), list(xs)]
    probs_seq = logits_seq
    labels = np.argmax(probs_seq, axis=1)
    dst_str = [k for k, v_ in groupby(labels) if k != C - 1]
    detal = len(gather_info) // (pts_num - 1)
    keep_idx_list = [0] + [detal * (i + 1) for i in range(pts_num - 2)] + [-1]
Jethong's avatar
Jethong committed
45
46
47
48
    keep_gather_list = [gather_info[idx] for idx in keep_idx_list]
    return dst_str, keep_gather_list


Jethong's avatar
Jethong committed
49
50
51
52
def ctc_decoder_for_image(gather_info_list,
                          logits_map,
                          Lexicon_Table,
                          pts_num=6):
Jethong's avatar
Jethong committed
53
54
55
    """
    CTC decoder using multiple processes.
    """
Jethong's avatar
Jethong committed
56
57
    decoder_str = []
    decoder_xys = []
Jethong's avatar
Jethong committed
58
    for gather_info in gather_info_list:
Jethong's avatar
Jethong committed
59
60
61
62
63
64
65
66
67
68
        if len(gather_info) < pts_num:
            continue
        dst_str, xys_list = instance_ctc_greedy_decoder(
            gather_info, logits_map, pts_num=pts_num)
        dst_str_readable = ''.join([Lexicon_Table[idx] for idx in dst_str])
        if len(dst_str_readable) < 2:
            continue
        decoder_str.append(dst_str_readable)
        decoder_xys.append(xys_list)
    return decoder_str, decoder_xys
Jethong's avatar
Jethong committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161


def sort_with_direction(pos_list, f_direction):
    """
    f_direction: h x w x 2
    pos_list: [[y, x], [y, x], [y, x] ...]
    """

    def sort_part_with_direction(pos_list, point_direction):
        pos_list = np.array(pos_list).reshape(-1, 2)
        point_direction = np.array(point_direction).reshape(-1, 2)
        average_direction = np.mean(point_direction, axis=0, keepdims=True)
        pos_proj_leng = np.sum(pos_list * average_direction, axis=1)
        sorted_list = pos_list[np.argsort(pos_proj_leng)].tolist()
        sorted_direction = point_direction[np.argsort(pos_proj_leng)].tolist()
        return sorted_list, sorted_direction

    pos_list = np.array(pos_list).reshape(-1, 2)
    point_direction = f_direction[pos_list[:, 0], pos_list[:, 1]]  # x, y
    point_direction = point_direction[:, ::-1]  # x, y -> y, x
    sorted_point, sorted_direction = sort_part_with_direction(pos_list,
                                                              point_direction)

    point_num = len(sorted_point)
    if point_num >= 16:
        middle_num = point_num // 2
        first_part_point = sorted_point[:middle_num]
        first_point_direction = sorted_direction[:middle_num]
        sorted_fist_part_point, sorted_fist_part_direction = sort_part_with_direction(
            first_part_point, first_point_direction)

        last_part_point = sorted_point[middle_num:]
        last_point_direction = sorted_direction[middle_num:]
        sorted_last_part_point, sorted_last_part_direction = sort_part_with_direction(
            last_part_point, last_point_direction)
        sorted_point = sorted_fist_part_point + sorted_last_part_point
        sorted_direction = sorted_fist_part_direction + sorted_last_part_direction

    return sorted_point, np.array(sorted_direction)


def sort_and_expand_with_direction_v2(pos_list, f_direction, binary_tcl_map):
    """
    f_direction: h x w x 2
    pos_list: [[y, x], [y, x], [y, x] ...]
    binary_tcl_map: h x w
    """
    h, w, _ = f_direction.shape
    sorted_list, point_direction = sort_with_direction(pos_list, f_direction)

    point_num = len(sorted_list)
    sub_direction_len = max(point_num // 3, 2)
    left_direction = point_direction[:sub_direction_len, :]
    right_dirction = point_direction[point_num - sub_direction_len:, :]

    left_average_direction = -np.mean(left_direction, axis=0, keepdims=True)
    left_average_len = np.linalg.norm(left_average_direction)
    left_start = np.array(sorted_list[0])
    left_step = left_average_direction / (left_average_len + 1e-6)

    right_average_direction = np.mean(right_dirction, axis=0, keepdims=True)
    right_average_len = np.linalg.norm(right_average_direction)
    right_step = right_average_direction / (right_average_len + 1e-6)
    right_start = np.array(sorted_list[-1])

    append_num = max(
        int((left_average_len + right_average_len) / 2.0 * 0.15), 1)
    max_append_num = 2 * append_num

    left_list = []
    right_list = []
    for i in range(max_append_num):
        ly, lx = np.round(left_start + left_step * (i + 1)).flatten().astype(
            'int32').tolist()
        if ly < h and lx < w and (ly, lx) not in left_list:
            if binary_tcl_map[ly, lx] > 0.5:
                left_list.append((ly, lx))
            else:
                break

    for i in range(max_append_num):
        ry, rx = np.round(right_start + right_step * (i + 1)).flatten().astype(
            'int32').tolist()
        if ry < h and rx < w and (ry, rx) not in right_list:
            if binary_tcl_map[ry, rx] > 0.5:
                right_list.append((ry, rx))
            else:
                break

    all_list = left_list[::-1] + sorted_list + right_list
    return all_list


Jethong's avatar
Jethong committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
def point_pair2poly(point_pair_list):
    """
    Transfer vertical point_pairs into poly point in clockwise.
    """
    point_num = len(point_pair_list) * 2
    point_list = [0] * point_num
    for idx, point_pair in enumerate(point_pair_list):
        point_list[idx] = point_pair[0]
        point_list[point_num - 1 - idx] = point_pair[1]
    return np.array(point_list).reshape(-1, 2)


def shrink_quad_along_width(quad, begin_width_ratio=0., end_width_ratio=1.):
    ratio_pair = np.array(
        [[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
    p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
    p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
    return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])


def expand_poly_along_width(poly, shrink_ratio_of_width=0.3):
    """
    expand poly along width.
    """
    point_num = poly.shape[0]
    left_quad = np.array(
        [poly[0], poly[1], poly[-2], poly[-1]], dtype=np.float32)
    left_ratio = -shrink_ratio_of_width * np.linalg.norm(left_quad[0] - left_quad[3]) / \
                 (np.linalg.norm(left_quad[0] - left_quad[1]) + 1e-6)
    left_quad_expand = shrink_quad_along_width(left_quad, left_ratio, 1.0)
    right_quad = np.array(
        [
            poly[point_num // 2 - 2], poly[point_num // 2 - 1],
            poly[point_num // 2], poly[point_num // 2 + 1]
        ],
        dtype=np.float32)
    right_ratio = 1.0 + shrink_ratio_of_width * np.linalg.norm(right_quad[0] - right_quad[3]) / \
                  (np.linalg.norm(right_quad[0] - right_quad[1]) + 1e-6)
    right_quad_expand = shrink_quad_along_width(right_quad, 0.0, right_ratio)
    poly[0] = left_quad_expand[0]
    poly[-1] = left_quad_expand[-1]
    poly[point_num // 2 - 1] = right_quad_expand[1]
    poly[point_num // 2] = right_quad_expand[2]
    return poly


def restore_poly(instance_yxs_list, seq_strs, p_border, ratio_w, ratio_h, src_w,
                 src_h, valid_set):
    poly_list = []
    keep_str_list = []
    for yx_center_line, keep_str in zip(instance_yxs_list, seq_strs):
        if len(keep_str) < 2:
            print('--> too short, {}'.format(keep_str))
            continue

        offset_expand = 1.0
        if valid_set == 'totaltext':
            offset_expand = 1.2

        point_pair_list = []
        for y, x in yx_center_line:
            offset = p_border[:, y, x].reshape(2, 2) * offset_expand
            ori_yx = np.array([y, x], dtype=np.float32)
            point_pair = (ori_yx + offset)[:, ::-1] * 4.0 / np.array(
                [ratio_w, ratio_h]).reshape(-1, 2)
            point_pair_list.append(point_pair)

        detected_poly = point_pair2poly(point_pair_list)
        detected_poly = expand_poly_along_width(
            detected_poly, shrink_ratio_of_width=0.2)
        detected_poly[:, 0] = np.clip(detected_poly[:, 0], a_min=0, a_max=src_w)
        detected_poly[:, 1] = np.clip(detected_poly[:, 1], a_min=0, a_max=src_h)

        keep_str_list.append(keep_str)
        if valid_set == 'partvgg':
            middle_point = len(detected_poly) // 2
            detected_poly = detected_poly[
                [0, middle_point - 1, middle_point, -1], :]
            poly_list.append(detected_poly)
        elif valid_set == 'totaltext':
            poly_list.append(detected_poly)
Jethong's avatar
Jethong committed
243
        else:
Jethong's avatar
Jethong committed
244
245
246
            print('--> Not supported format.')
            exit(-1)
    return poly_list, keep_str_list
Jethong's avatar
Jethong committed
247
248
249
250
251


def generate_pivot_list(p_score,
                        p_char_maps,
                        f_direction,
Jethong's avatar
Jethong committed
252
253
                        Lexicon_Table,
                        score_thresh=0.5):
Jethong's avatar
Jethong committed
254
255
256
257
258
    """
    return center point and end point of TCL instance; filter with the char maps;
    """
    p_score = p_score[0]
    f_direction = f_direction.transpose(1, 2, 0)
Jethong's avatar
Jethong committed
259
260
261
    ret, p_tcl_map = cv2.threshold(p_score, score_thresh, 255,
                                   cv2.THRESH_BINARY)
    skeleton_map = thin(p_tcl_map.astype('uint8'))
Jethong's avatar
Jethong committed
262
    instance_count, instance_label_map = cv2.connectedComponents(
Jethong's avatar
Jethong committed
263
        skeleton_map, connectivity=8)
Jethong's avatar
Jethong committed
264

Jethong's avatar
Jethong committed
265
    # get TCL Instance
Jethong's avatar
Jethong committed
266
267
268
269
270
271
    all_pos_yxs = []
    if instance_count > 0:
        for instance_id in range(1, instance_count):
            pos_list = []
            ys, xs = np.where(instance_label_map == instance_id)
            pos_list = list(zip(ys, xs))
Jethong's avatar
Jethong committed
272

Jethong's avatar
Jethong committed
273
274
            if len(pos_list) < 3:
                continue
Jethong's avatar
Jethong committed
275

Jethong's avatar
Jethong committed
276
277
            pos_list_sorted = sort_and_expand_with_direction_v2(
                pos_list, f_direction, p_tcl_map)
Jethong's avatar
Jethong committed
278
279
280
281
282
283
            all_pos_yxs.append(pos_list_sorted)

    p_char_maps = p_char_maps.transpose([1, 2, 0])
    decoded_str, keep_yxs_list = ctc_decoder_for_image(
        all_pos_yxs, logits_map=p_char_maps, Lexicon_Table=Lexicon_Table)
    return keep_yxs_list, decoded_str