operators.py 11.9 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
"""
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import sys
import six
import cv2
import numpy as np
tink2123's avatar
tink2123 committed
26
import fasttext
WenmuZhou's avatar
WenmuZhou committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


class DecodeImage(object):
    """ decode image """

    def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
        self.img_mode = img_mode
        self.channel_first = channel_first

    def __call__(self, data):
        img = data['image']
        if six.PY2:
            assert type(img) is str and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        else:
            assert type(img) is bytes and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        img = np.frombuffer(img, dtype='uint8')
        img = cv2.imdecode(img, 1)
LDOUBLEV's avatar
LDOUBLEV committed
46
47
        if img is None:
            return None
WenmuZhou's avatar
WenmuZhou committed
48
49
50
51
52
53
54
55
56
57
58
59
60
        if self.img_mode == 'GRAY':
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        elif self.img_mode == 'RGB':
            assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
            img = img[:, :, ::-1]

        if self.channel_first:
            img = img.transpose((2, 0, 1))

        data['image'] = img
        return data


Topdu's avatar
Topdu committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
class NRTRDecodeImage(object):
    """ decode image """

    def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
        self.img_mode = img_mode
        self.channel_first = channel_first

    def __call__(self, data):
        img = data['image']
        if six.PY2:
            assert type(img) is str and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        else:
            assert type(img) is bytes and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        img = np.frombuffer(img, dtype='uint8')

        img = cv2.imdecode(img, 1)

        if img is None:
            return None
        if self.img_mode == 'GRAY':
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        elif self.img_mode == 'RGB':
            assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
            img = img[:, :, ::-1]
tink2123's avatar
tink2123 committed
87
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
Topdu's avatar
Topdu committed
88
89
90
91
92
        if self.channel_first:
            img = img.transpose((2, 0, 1))
        data['image'] = img
        return data

tink2123's avatar
tink2123 committed
93

WenmuZhou's avatar
WenmuZhou committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
class NormalizeImage(object):
    """ normalize image such as substract mean, divide std
    """

    def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
        if isinstance(scale, str):
            scale = eval(scale)
        self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
        mean = mean if mean is not None else [0.485, 0.456, 0.406]
        std = std if std is not None else [0.229, 0.224, 0.225]

        shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
        self.mean = np.array(mean).reshape(shape).astype('float32')
        self.std = np.array(std).reshape(shape).astype('float32')

    def __call__(self, data):
        img = data['image']
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)

        assert isinstance(img,
                          np.ndarray), "invalid input 'img' in NormalizeImage"
        data['image'] = (
LDOUBLEV's avatar
LDOUBLEV committed
118
            img.astype('float32') * self.scale - self.mean) / self.std
WenmuZhou's avatar
WenmuZhou committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        return data


class ToCHWImage(object):
    """ convert hwc image to chw image
    """

    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        img = data['image']
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)
        data['image'] = img.transpose((2, 0, 1))
        return data


tink2123's avatar
tink2123 committed
138
139
140
141
142
143
144
145
146
147
148
class Fasttext(object):
    def __init__(self, path="None", **kwargs):
        self.fast_model = fasttext.load_model(path)

    def __call__(self, data):
        label = data['label']
        fast_label = self.fast_model[label]
        data['fast_label'] = fast_label
        return data


dyning's avatar
dyning committed
149
class KeepKeys(object):
WenmuZhou's avatar
WenmuZhou committed
150
151
152
153
154
155
156
157
158
159
    def __init__(self, keep_keys, **kwargs):
        self.keep_keys = keep_keys

    def __call__(self, data):
        data_list = []
        for key in self.keep_keys:
            data_list.append(data[key])
        return data_list


LDOUBLEV's avatar
LDOUBLEV committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
class Resize(object):
    def __init__(self, size=(640, 640), **kwargs):
        self.size = size

    def resize_image(self, img):
        resize_h, resize_w = self.size
        ori_h, ori_w = img.shape[:2]  # (h, w, c)
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
        return img, [ratio_h, ratio_w]

    def __call__(self, data):
        img = data['image']
        text_polys = data['polys']

        img_resize, [ratio_h, ratio_w] = self.resize_image(img)
        new_boxes = []
        for box in text_polys:
            new_box = []
            for cord in box:
                new_box.append([cord[0] * ratio_w, cord[1] * ratio_h])
            new_boxes.append(new_box)
        data['image'] = img_resize
        data['polys'] = np.array(new_boxes, dtype=np.float32)
        return data


WenmuZhou's avatar
WenmuZhou committed
188
189
190
191
192
193
194
class DetResizeForTest(object):
    def __init__(self, **kwargs):
        super(DetResizeForTest, self).__init__()
        self.resize_type = 0
        if 'image_shape' in kwargs:
            self.image_shape = kwargs['image_shape']
            self.resize_type = 1
zhoujun's avatar
zhoujun committed
195
        elif 'limit_side_len' in kwargs:
WenmuZhou's avatar
WenmuZhou committed
196
197
            self.limit_side_len = kwargs['limit_side_len']
            self.limit_type = kwargs.get('limit_type', 'min')
zhoujun's avatar
zhoujun committed
198
        elif 'resize_long' in kwargs:
MissPenguin's avatar
MissPenguin committed
199
200
            self.resize_type = 2
            self.resize_long = kwargs.get('resize_long', 960)
WenmuZhou's avatar
WenmuZhou committed
201
202
203
204
205
206
        else:
            self.limit_side_len = 736
            self.limit_type = 'min'

    def __call__(self, data):
        img = data['image']
MissPenguin's avatar
MissPenguin committed
207
        src_h, src_w, _ = img.shape
WenmuZhou's avatar
WenmuZhou committed
208
209

        if self.resize_type == 0:
MissPenguin's avatar
MissPenguin committed
210
211
212
213
            # img, shape = self.resize_image_type0(img)
            img, [ratio_h, ratio_w] = self.resize_image_type0(img)
        elif self.resize_type == 2:
            img, [ratio_h, ratio_w] = self.resize_image_type2(img)
WenmuZhou's avatar
WenmuZhou committed
214
        else:
MissPenguin's avatar
MissPenguin committed
215
216
            # img, shape = self.resize_image_type1(img)
            img, [ratio_h, ratio_w] = self.resize_image_type1(img)
WenmuZhou's avatar
WenmuZhou committed
217
        data['image'] = img
MissPenguin's avatar
MissPenguin committed
218
        data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
WenmuZhou's avatar
WenmuZhou committed
219
220
221
222
223
        return data

    def resize_image_type1(self, img):
        resize_h, resize_w = self.image_shape
        ori_h, ori_w = img.shape[:2]  # (h, w, c)
MissPenguin's avatar
MissPenguin committed
224
225
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
WenmuZhou's avatar
WenmuZhou committed
226
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
MissPenguin's avatar
MissPenguin committed
227
228
        # return img, np.array([ori_h, ori_w])
        return img, [ratio_h, ratio_w]
WenmuZhou's avatar
WenmuZhou committed
229
230
231
232
233
234
235
236
237
238

    def resize_image_type0(self, img):
        """
        resize image to a size multiple of 32 which is required by the network
        args:
            img(array): array with shape [h, w, c]
        return(tuple):
            img, (ratio_h, ratio_w)
        """
        limit_side_len = self.limit_side_len
WenmuZhou's avatar
WenmuZhou committed
239
        h, w, c = img.shape
WenmuZhou's avatar
WenmuZhou committed
240
241
242
243
244
245
246
247
248
249

        # limit the max side
        if self.limit_type == 'max':
            if max(h, w) > limit_side_len:
                if h > w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.
WenmuZhou's avatar
WenmuZhou committed
250
        elif self.limit_type == 'min':
WenmuZhou's avatar
WenmuZhou committed
251
252
253
254
255
256
257
            if min(h, w) < limit_side_len:
                if h < w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.
WenmuZhou's avatar
WenmuZhou committed
258
        elif self.limit_type == 'resize_long':
LDOUBLEV's avatar
LDOUBLEV committed
259
            ratio = float(limit_side_len) / max(h, w)
WenmuZhou's avatar
WenmuZhou committed
260
261
        else:
            raise Exception('not support limit type, image ')
WenmuZhou's avatar
WenmuZhou committed
262
263
264
        resize_h = int(h * ratio)
        resize_w = int(w * ratio)

zhoujun's avatar
zhoujun committed
265
266
        resize_h = max(int(round(resize_h / 32) * 32), 32)
        resize_w = max(int(round(resize_w / 32) * 32), 32)
WenmuZhou's avatar
WenmuZhou committed
267
268
269
270
271
272
273
274

        try:
            if int(resize_w) <= 0 or int(resize_h) <= 0:
                return None, (None, None)
            img = cv2.resize(img, (int(resize_w), int(resize_h)))
        except:
            print(img.shape, resize_w, resize_h)
            sys.exit(0)
MissPenguin's avatar
MissPenguin committed
275
276
277
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return img, [ratio_h, ratio_w]
LDOUBLEV's avatar
LDOUBLEV committed
278

MissPenguin's avatar
MissPenguin committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    def resize_image_type2(self, img):
        h, w, _ = img.shape

        resize_w = w
        resize_h = h

        if resize_h > resize_w:
            ratio = float(self.resize_long) / resize_h
        else:
            ratio = float(self.resize_long) / resize_w

        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)

        return img, [ratio_h, ratio_w]
Jethong's avatar
Jethong committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323


class E2EResizeForTest(object):
    def __init__(self, **kwargs):
        super(E2EResizeForTest, self).__init__()
        self.max_side_len = kwargs['max_side_len']
        self.valid_set = kwargs['valid_set']

    def __call__(self, data):
        img = data['image']
        src_h, src_w, _ = img.shape
        if self.valid_set == 'totaltext':
            im_resized, [ratio_h, ratio_w] = self.resize_image_for_totaltext(
                img, max_side_len=self.max_side_len)
        else:
            im_resized, (ratio_h, ratio_w) = self.resize_image(
                img, max_side_len=self.max_side_len)
        data['image'] = im_resized
        data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
        return data

    def resize_image_for_totaltext(self, im, max_side_len=512):

324
        h, w, _ = im.shape
Jethong's avatar
Jethong committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
        resize_w = w
        resize_h = h
        ratio = 1.25
        if h * ratio > max_side_len:
            ratio = float(max_side_len) / resize_h
        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return im, (ratio_h, ratio_w)

    def resize_image(self, im, max_side_len=512):
        """
        resize image to a size multiple of max_stride which is required by the network
        :param im: the resized image
        :param max_side_len: limit of max image size to avoid out of memory in gpu
        :return: the resized image and the resize ratio
        """
        h, w, _ = im.shape

        resize_w = w
        resize_h = h

        # Fix the longer side
        if resize_h > resize_w:
            ratio = float(max_side_len) / resize_h
        else:
            ratio = float(max_side_len) / resize_w

        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)

        return im, (ratio_h, ratio_w)