train.py 4.68 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
LDOUBLEV's avatar
LDOUBLEV committed
21
22
23
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..'))
LDOUBLEV's avatar
LDOUBLEV committed
24
25
26
27
28
29
30
31
32
33


def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
tink2123's avatar
tink2123 committed
34
# not take any effect.
LDOUBLEV's avatar
LDOUBLEV committed
35
36
37
38
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

39
import tools.program as program
LDOUBLEV's avatar
LDOUBLEV committed
40
41
42
43
44
45
from paddle import fluid
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.data.reader_main import reader_main
from ppocr.utils.save_load import init_model
from ppocr.utils.character import CharacterOps
lyl120117's avatar
lyl120117 committed
46
from paddle.fluid.contrib.model_stat import summary
LDOUBLEV's avatar
LDOUBLEV committed
47
48
49
50
51
52
53
54
55


def main():
    config = program.load_config(FLAGS.config)
    program.merge_config(FLAGS.opt)
    logger.info(config)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
tink2123's avatar
tink2123 committed
56
    program.check_gpu(use_gpu)
LDOUBLEV's avatar
LDOUBLEV committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

    alg = config['Global']['algorithm']
    assert alg in ['EAST', 'DB', 'Rosetta', 'CRNN', 'STARNet', 'RARE']
    if alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE']:
        config['Global']['char_ops'] = CharacterOps(config['Global'])

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    startup_program = fluid.Program()
    train_program = fluid.Program()
    train_build_outputs = program.build(
        config, train_program, startup_program, mode='train')
    train_loader = train_build_outputs[0]
    train_fetch_name_list = train_build_outputs[1]
    train_fetch_varname_list = train_build_outputs[2]
    train_opt_loss_name = train_build_outputs[3]

    eval_program = fluid.Program()
    eval_build_outputs = program.build(
        config, eval_program, startup_program, mode='eval')
    eval_fetch_name_list = eval_build_outputs[1]
    eval_fetch_varname_list = eval_build_outputs[2]
    eval_program = eval_program.clone(for_test=True)

    train_reader = reader_main(config=config, mode="train")
    train_loader.set_sample_list_generator(train_reader, places=place)

    eval_reader = reader_main(config=config, mode="eval")

    exe = fluid.Executor(place)
    exe.run(startup_program)

    # compile program for multi-devices
    train_compile_program = program.create_multi_devices_program(
        train_program, train_opt_loss_name)
lyl120117's avatar
lyl120117 committed
91
92
93

    # dump mode structure
    if config['Global']['debug']:
94
        if 'attention' in config['Global']['loss_type']:
lyl120117's avatar
lyl120117 committed
95
96
97
98
            logger.warning('Does not suport dump attention...')
        else:
            summary(train_program)

LDOUBLEV's avatar
LDOUBLEV committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    init_model(config, train_program, exe)

    train_info_dict = {'compile_program':train_compile_program,\
        'train_program':train_program,\
        'reader':train_loader,\
        'fetch_name_list':train_fetch_name_list,\
        'fetch_varname_list':train_fetch_varname_list}

    eval_info_dict = {'program':eval_program,\
        'reader':eval_reader,\
        'fetch_name_list':eval_fetch_name_list,\
        'fetch_varname_list':eval_fetch_varname_list}

    if alg in ['EAST', 'DB']:
        program.train_eval_det_run(config, exe, train_info_dict, eval_info_dict)
    else:
        program.train_eval_rec_run(config, exe, train_info_dict, eval_info_dict)


118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
def test_reader():
    config = program.load_config(FLAGS.config)
    program.merge_config(FLAGS.opt)
    print(config)
    train_reader = reader_main(config=config, mode="train")
    import time
    starttime = time.time()
    count = 0
    try:
        for data in train_reader():
            count += 1
            if count % 1 == 0:
                batch_time = time.time() - starttime
                starttime = time.time()
                print("reader:", count, len(data), batch_time)
    except Exception as e:
LDOUBLEV's avatar
LDOUBLEV committed
134
135
        logger.info(e)
    logger.info("finish reader: {}, Success!".format(count))
136
137


LDOUBLEV's avatar
LDOUBLEV committed
138
139
140
141
142
if __name__ == '__main__':
    parser = program.ArgsParser()
    FLAGS = parser.parse_args()
    main()
#     test_reader()