character.py 7.73 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import string
import re
from .check import check_config_params
import sys


class CharacterOps(object):
    """ Convert between text-label and text-index """

    def __init__(self, config):
        self.character_type = config['character_type']
        self.loss_type = config['loss_type']
tink2123's avatar
tink2123 committed
28
        self.max_text_len = config['max_text_length']
LDOUBLEV's avatar
LDOUBLEV committed
29
30
31
32
33
        if self.character_type == "en":
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
        elif self.character_type == "ch":
            character_dict_path = config['character_dict_path']
34
            add_space = False
tink2123's avatar
tink2123 committed
35
36
            if 'use_space_char' in config:
                add_space = config['use_space_char']
LDOUBLEV's avatar
LDOUBLEV committed
37
38
39
40
            self.character_str = ""
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
tink2123's avatar
tink2123 committed
41
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
LDOUBLEV's avatar
LDOUBLEV committed
42
                    self.character_str += line
43
44
            if add_space:
                self.character_str += " "
LDOUBLEV's avatar
LDOUBLEV committed
45
46
47
48
49
50
51
52
53
54
55
56
57
            dict_character = list(self.character_str)
        elif self.character_type == "en_sensitive":
            # same with ASTER setting (use 94 char).
            self.character_str = string.printable[:-6]
            dict_character = list(self.character_str)
        else:
            self.character_str = None
        assert self.character_str is not None, \
            "Nonsupport type of the character: {}".format(self.character_str)
        self.beg_str = "sos"
        self.end_str = "eos"
        if self.loss_type == "attention":
            dict_character = [self.beg_str, self.end_str] + dict_character
tink2123's avatar
tink2123 committed
58
59
        elif self.loss_type == "srn":
            dict_character = dict_character + [self.beg_str, self.end_str]
LDOUBLEV's avatar
LDOUBLEV committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def encode(self, text):
        """convert text-label into text-index.
        input:
            text: text labels of each image. [batch_size]

        output:
            text: concatenated text index for CTCLoss.
                    [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
            length: length of each text. [batch_size]
        """
tink2123's avatar
tink2123 committed
75
        if self.character_type == "en":
LDOUBLEV's avatar
LDOUBLEV committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
            text = text.lower()

        text_list = []
        for char in text:
            if char not in self.dict:
                continue
            text_list.append(self.dict[char])
        text = np.array(text_list)
        return text

    def decode(self, text_index, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        char_list = []
        char_num = self.get_char_num()

        if self.loss_type == "attention":
            beg_idx = self.get_beg_end_flag_idx("beg")
            end_idx = self.get_beg_end_flag_idx("end")
            ignored_tokens = [beg_idx, end_idx]
        else:
            ignored_tokens = [char_num]

        for idx in range(len(text_index)):
            if text_index[idx] in ignored_tokens:
                continue
            if is_remove_duplicate:
                if idx > 0 and text_index[idx - 1] == text_index[idx]:
                    continue
tink2123's avatar
tink2123 committed
104
            char_list.append(self.character[int(text_index[idx])])
LDOUBLEV's avatar
LDOUBLEV committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        text = ''.join(char_list)
        return text

    def get_char_num(self):
        return len(self.character)

    def get_beg_end_flag_idx(self, beg_or_end):
        if self.loss_type == "attention":
            if beg_or_end == "beg":
                idx = np.array(self.dict[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict[self.end_str])
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx"\
                    % beg_or_end
            return idx
        else:
            err = "error in get_beg_end_flag_idx when using the loss %s"\
                % (self.loss_type)
            assert False, err


def cal_predicts_accuracy(char_ops,
                          preds,
                          preds_lod,
                          labels,
                          labels_lod,
                          is_remove_duplicate=False):
    acc_num = 0
    img_num = 0
    for ino in range(len(labels_lod) - 1):
        beg_no = preds_lod[ino]
        end_no = preds_lod[ino + 1]
        preds_text = preds[beg_no:end_no].reshape(-1)
        preds_text = char_ops.decode(preds_text, is_remove_duplicate)

        beg_no = labels_lod[ino]
        end_no = labels_lod[ino + 1]
        labels_text = labels[beg_no:end_no].reshape(-1)
        labels_text = char_ops.decode(labels_text, is_remove_duplicate)
        img_num += 1

        if preds_text == labels_text:
            acc_num += 1
    acc = acc_num * 1.0 / img_num
tink2123's avatar
tink2123 committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    return acc, acc_num, img_num

def cal_predicts_accuracy_srn(char_ops,
                          preds,
                          labels,
                          max_text_len,
                          is_debug=False):
    acc_num = 0
    img_num = 0

    total_len = preds.shape[0]
    img_num = int(total_len / max_text_len)
    #print (img_num)
    for i in range(img_num):
        cur_label = []
        cur_pred = []
        for j in range(max_text_len):
            if labels[j + i * max_text_len] != 37: #0
                cur_label.append(labels[j + i * max_text_len][0])
            else:
                break

        if is_debug:
            for j in range(max_text_len):
                if preds[j + i * max_text_len] != 37: #0
                    cur_pred.append(preds[j + i * max_text_len][0])
                else:
                    break
            print ("cur_label: ", cur_label)
            print ("cur_pred: ", cur_pred)


        for j in range(max_text_len + 1):
            if j < len(cur_label) and preds[j + i * max_text_len][0] != cur_label[j]:
                break
            elif j == len(cur_label) and j == max_text_len:
                acc_num += 1
                break
            elif j == len(cur_label) and preds[j + i * max_text_len][0] == 37:
                acc_num += 1
                break
    acc = acc_num * 1.0 / img_num
LDOUBLEV's avatar
LDOUBLEV committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    return acc, acc_num, img_num


def convert_rec_attention_infer_res(preds):
    img_num = preds.shape[0]
    target_lod = [0]
    convert_ids = []
    for ino in range(img_num):
        end_pos = np.where(preds[ino, :] == 1)[0]
        if len(end_pos) <= 1:
            text_list = preds[ino, 1:]
        else:
            text_list = preds[ino, 1:end_pos[1]]
        target_lod.append(target_lod[ino] + len(text_list))
        convert_ids = convert_ids + list(text_list)
    convert_ids = np.array(convert_ids)
    convert_ids = convert_ids.reshape((-1, 1))
    return convert_ids, target_lod


def convert_rec_label_to_lod(ori_labels):
    img_num = len(ori_labels)
    target_lod = [0]
    convert_ids = []
    for ino in range(img_num):
        target_lod.append(target_lod[ino] + len(ori_labels[ino]))
        convert_ids = convert_ids + list(ori_labels[ino])
    convert_ids = np.array(convert_ids)
    convert_ids = convert_ids.reshape((-1, 1))
    return convert_ids, target_lod