model.py 37.1 KB
Newer Older
tink2123's avatar
tink2123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
from functools import partial
import numpy as np

import paddle.fluid as fluid
import paddle.fluid.layers as layers

from .desc import *
from .config import ModelHyperParams,TrainTaskConfig

def wrap_layer_with_block(layer, block_idx):
    """
    Make layer define support indicating block, by which we can add layers
    to other blocks within current block. This will make it easy to define
    cache among while loop.
    """

    class BlockGuard(object):
        """
        BlockGuard class.

        BlockGuard class is used to switch to the given block in a program by
        using the Python `with` keyword.
        """

        def __init__(self, block_idx=None, main_program=None):
            self.main_program = fluid.default_main_program(
            ) if main_program is None else main_program
            self.old_block_idx = self.main_program.current_block().idx
            self.new_block_idx = block_idx

        def __enter__(self):
            self.main_program.current_block_idx = self.new_block_idx

        def __exit__(self, exc_type, exc_val, exc_tb):
            self.main_program.current_block_idx = self.old_block_idx
            if exc_type is not None:
                return False  # re-raise exception
            return True

    def layer_wrapper(*args, **kwargs):
        with BlockGuard(block_idx):
            return layer(*args, **kwargs)

    return layer_wrapper


def position_encoding_init(n_position, d_pos_vec):
    """
    Generate the initial values for the sinusoid position encoding table.
    """
    channels = d_pos_vec
    position = np.arange(n_position)
    num_timescales = channels // 2
    log_timescale_increment = (np.log(float(1e4) / float(1)) /
                               (num_timescales - 1))
    inv_timescales = np.exp(np.arange(
        num_timescales)) * -log_timescale_increment
    scaled_time = np.expand_dims(position, 1) * np.expand_dims(inv_timescales,
                                                               0)
    signal = np.concatenate([np.sin(scaled_time), np.cos(scaled_time)], axis=1)
    signal = np.pad(signal, [[0, 0], [0, np.mod(channels, 2)]], 'constant')
    position_enc = signal
    return position_enc.astype("float32")


def multi_head_attention(queries,
                         keys,
                         values,
                         attn_bias,
                         d_key,
                         d_value,
                         d_model,
                         n_head=1,
                         dropout_rate=0.,
                         cache=None,
                         gather_idx=None,
                         static_kv=False):
    """
    Multi-Head Attention. Note that attn_bias is added to the logit before
    computing softmax activiation to mask certain selected positions so that
    they will not considered in attention weights.
    """
    keys = queries if keys is None else keys
    values = keys if values is None else values

    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
            "Inputs: quries, keys and values should all be 3-D tensors.")

    def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
        """
        Add linear projection to queries, keys, and values.
        """
        q = layers.fc(input=queries,
                      size=d_key * n_head,
                      bias_attr=False,
                      num_flatten_dims=2)
        # For encoder-decoder attention in inference, insert the ops and vars
        # into global block to use as cache among beam search.
        fc_layer = wrap_layer_with_block(
            layers.fc, fluid.default_main_program().current_block()
            .parent_idx) if cache is not None and static_kv else layers.fc
        k = fc_layer(
            input=keys,
            size=d_key * n_head,
            bias_attr=False,
            num_flatten_dims=2)
        v = fc_layer(
            input=values,
            size=d_value * n_head,
            bias_attr=False,
            num_flatten_dims=2)
        return q, k, v

    def __split_heads_qkv(queries, keys, values, n_head, d_key, d_value):
        """
        Reshape input tensors at the last dimension to split multi-heads 
        and then transpose. Specifically, transform the input tensor with shape
        [bs, max_sequence_length, n_head * hidden_dim] to the output tensor
        with shape [bs, n_head, max_sequence_length, hidden_dim].
        """
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
        reshaped_q = layers.reshape(
            x=queries, shape=[0, 0, n_head, d_key], inplace=True)
        # permuate the dimensions into:
        # [batch_size, n_head, max_sequence_len, hidden_size_per_head]
        q = layers.transpose(x=reshaped_q, perm=[0, 2, 1, 3])
        # For encoder-decoder attention in inference, insert the ops and vars
        # into global block to use as cache among beam search.
        reshape_layer = wrap_layer_with_block(
            layers.reshape,
            fluid.default_main_program().current_block()
            .parent_idx) if cache is not None and static_kv else layers.reshape
        transpose_layer = wrap_layer_with_block(
            layers.transpose,
            fluid.default_main_program().current_block().
            parent_idx) if cache is not None and static_kv else layers.transpose
        reshaped_k = reshape_layer(
            x=keys, shape=[0, 0, n_head, d_key], inplace=True)
        k = transpose_layer(x=reshaped_k, perm=[0, 2, 1, 3])
        reshaped_v = reshape_layer(
            x=values, shape=[0, 0, n_head, d_value], inplace=True)
        v = transpose_layer(x=reshaped_v, perm=[0, 2, 1, 3])

        if cache is not None:  # only for faster inference
            if static_kv:  # For encoder-decoder attention in inference
                cache_k, cache_v = cache["static_k"], cache["static_v"]
                # To init the static_k and static_v in cache.
                # Maybe we can use condition_op(if_else) to do these at the first
                # step in while loop to replace these, however it might be less
                # efficient.
                static_cache_init = wrap_layer_with_block(
                    layers.assign,
                    fluid.default_main_program().current_block().parent_idx)
                static_cache_init(k, cache_k)
                static_cache_init(v, cache_v)
            else:  # For decoder self-attention in inference
                cache_k, cache_v = cache["k"], cache["v"]
            # gather cell states corresponding to selected parent
            select_k = layers.gather(cache_k, index=gather_idx)
            select_v = layers.gather(cache_v, index=gather_idx)
            if not static_kv:
                # For self attention in inference, use cache and concat time steps.
                select_k = layers.concat([select_k, k], axis=2)
                select_v = layers.concat([select_v, v], axis=2)
            # update cell states(caches) cached in global block
            layers.assign(select_k, cache_k)
            layers.assign(select_v, cache_v)
            return q, select_k, select_v
        return q, k, v

    def __combine_heads(x):
        """
        Transpose and then reshape the last two dimensions of inpunt tensor x
        so that it becomes one dimension, which is reverse to __split_heads.
        """
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
        return layers.reshape(
            x=trans_x,
            shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]],
            inplace=True)

    def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
        """
        Scaled Dot-Product Attention
        """
        # print(q)
        # print(k)

        product = layers.matmul(x=q, y=k, transpose_y=True, alpha=d_key**-0.5)
        if attn_bias:
            product += attn_bias
        weights = layers.softmax(product)
        if dropout_rate:
            weights = layers.dropout(
                weights,
                dropout_prob=dropout_rate,
                seed=dropout_seed,
                is_test=False)
        out = layers.matmul(weights, v)
        return out

    q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
    q, k, v = __split_heads_qkv(q, k, v, n_head, d_key, d_value)

    ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_model,
                                                  dropout_rate)

    out = __combine_heads(ctx_multiheads)

    # Project back to the model size.
    proj_out = layers.fc(input=out,
                         size=d_model,
                         bias_attr=False,
                         num_flatten_dims=2)
    return proj_out


def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate):
    """
    Position-wise Feed-Forward Networks.
    This module consists of two linear transformations with a ReLU activation
    in between, which is applied to each position separately and identically.
    """
    hidden = layers.fc(input=x,
                       size=d_inner_hid,
                       num_flatten_dims=2,
                       act="relu")
    if dropout_rate:
        hidden = layers.dropout(
            hidden, dropout_prob=dropout_rate, seed=dropout_seed, is_test=False)
    out = layers.fc(input=hidden, size=d_hid, num_flatten_dims=2)
    return out


def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.):
    """
    Add residual connection, layer normalization and droput to the out tensor
    optionally according to the value of process_cmd.
    This will be used before or after multi-head attention and position-wise
    feed-forward networks.
    """
    for cmd in process_cmd:
        if cmd == "a":  # add residual connection
            out = out + prev_out if prev_out else out
        elif cmd == "n":  # add layer normalization
            out = layers.layer_norm(
                out,
                begin_norm_axis=len(out.shape) - 1,
                param_attr=fluid.initializer.Constant(1.),
                bias_attr=fluid.initializer.Constant(0.))
        elif cmd == "d":  # add dropout
            if dropout_rate:
                out = layers.dropout(
                    out,
                    dropout_prob=dropout_rate,
                    seed=dropout_seed,
                    is_test=False)
    return out


pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer


def prepare_encoder(src_word,#[b,t,c]
                            src_pos,
                            src_vocab_size,
                            src_emb_dim,
                            src_max_len,
                            dropout_rate=0.,
                            bos_idx=0,
                            word_emb_param_name=None,
                            pos_enc_param_name=None):
    """Add word embeddings and position encodings.
    The output tensor has a shape of:
    [batch_size, max_src_length_in_batch, d_model].
    This module is used at the bottom of the encoder stacks.
    """
    
    src_word_emb =src_word#layers.concat(res,axis=1)
    src_word_emb=layers.cast(src_word_emb,'float32')
    # print("src_word_emb",src_word_emb)

    src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5)
    src_pos_enc = layers.embedding(
        src_pos,
        size=[src_max_len, src_emb_dim],
        param_attr=fluid.ParamAttr(
            name=pos_enc_param_name, trainable=False))
    src_pos_enc.stop_gradient = True
    enc_input = src_word_emb + src_pos_enc
    return layers.dropout(
        enc_input, dropout_prob=dropout_rate, seed=dropout_seed,
        is_test=False) if dropout_rate else enc_input


def prepare_decoder(src_word,
                            src_pos,
                            src_vocab_size,
                            src_emb_dim,
                            src_max_len,
                            dropout_rate=0.,
                            bos_idx=0,
                            word_emb_param_name=None,
                            pos_enc_param_name=None):
    """Add word embeddings and position encodings.
        The output tensor has a shape of:
        [batch_size, max_src_length_in_batch, d_model].
        This module is used at the bottom of the encoder stacks.
        """
    src_word_emb = layers.embedding(
        src_word,
        size=[src_vocab_size, src_emb_dim],
        padding_idx=bos_idx,  # set embedding of bos to 0
        param_attr=fluid.ParamAttr(
            name=word_emb_param_name,
            initializer=fluid.initializer.Normal(0., src_emb_dim**-0.5)))
    # print("target_word_emb",src_word_emb)
    src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim ** 0.5)
    src_pos_enc = layers.embedding(
        src_pos,
        size=[src_max_len, src_emb_dim],
        param_attr=fluid.ParamAttr(
            name=pos_enc_param_name, trainable=False))
    src_pos_enc.stop_gradient = True
    enc_input = src_word_emb + src_pos_enc
    return layers.dropout(
        enc_input, dropout_prob=dropout_rate, seed=dropout_seed,
        is_test=False) if dropout_rate else enc_input

# prepare_encoder = partial(
#     prepare_encoder_decoder, pos_enc_param_name=pos_enc_param_names[0])
# prepare_decoder = partial(
#     prepare_encoder_decoder, pos_enc_param_name=pos_enc_param_names[1])


def encoder_layer(enc_input,
                  attn_bias,
                  n_head,
                  d_key,
                  d_value,
                  d_model,
                  d_inner_hid,
                  prepostprocess_dropout,
                  attention_dropout,
                  relu_dropout,
                  preprocess_cmd="n",
                  postprocess_cmd="da"):
    """The encoder layers that can be stacked to form a deep encoder.
    This module consits of a multi-head (self) attention followed by
    position-wise feed-forward networks and both the two components companied
    with the post_process_layer to add residual connection, layer normalization
    and droput.
    """
    attn_output = multi_head_attention(
        pre_process_layer(enc_input, preprocess_cmd,
                          prepostprocess_dropout), None, None, attn_bias, d_key,
        d_value, d_model, n_head, attention_dropout)
    attn_output = post_process_layer(enc_input, attn_output, postprocess_cmd,
                                     prepostprocess_dropout)
    ffd_output = positionwise_feed_forward(
        pre_process_layer(attn_output, preprocess_cmd, prepostprocess_dropout),
        d_inner_hid, d_model, relu_dropout)
    return post_process_layer(attn_output, ffd_output, postprocess_cmd,
                              prepostprocess_dropout)


def encoder(enc_input,
            attn_bias,
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            preprocess_cmd="n",
            postprocess_cmd="da"):
    """
    The encoder is composed of a stack of identical layers returned by calling
    encoder_layer.
    """
    for i in range(n_layer):
        enc_output = encoder_layer(
            enc_input,
            attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            preprocess_cmd,
            postprocess_cmd, )
        enc_input = enc_output
    enc_output = pre_process_layer(enc_output, preprocess_cmd,
                                   prepostprocess_dropout)
    return enc_output


def decoder_layer(dec_input,
                  enc_output,
                  slf_attn_bias,
                  dec_enc_attn_bias,
                  n_head,
                  d_key,
                  d_value,
                  d_model,
                  d_inner_hid,
                  prepostprocess_dropout,
                  attention_dropout,
                  relu_dropout,
                  preprocess_cmd,
                  postprocess_cmd,
                  cache=None,
                  gather_idx=None):
    """ The layer to be stacked in decoder part.
    The structure of this module is similar to that in the encoder part except
    a multi-head attention is added to implement encoder-decoder attention.
    """
    slf_attn_output = multi_head_attention(
        pre_process_layer(dec_input, preprocess_cmd, prepostprocess_dropout),
        None,
        None,
        slf_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
        attention_dropout,
        cache=cache,
        gather_idx=gather_idx)
    slf_attn_output = post_process_layer(
        dec_input,
        slf_attn_output,
        postprocess_cmd,
        prepostprocess_dropout, )
    enc_attn_output = multi_head_attention(
        pre_process_layer(slf_attn_output, preprocess_cmd,
                          prepostprocess_dropout),
        enc_output,
        enc_output,
        dec_enc_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
        attention_dropout,
        cache=cache,
        gather_idx=gather_idx,
        static_kv=True)
    enc_attn_output = post_process_layer(
        slf_attn_output,
        enc_attn_output,
        postprocess_cmd,
        prepostprocess_dropout, )
    ffd_output = positionwise_feed_forward(
        pre_process_layer(enc_attn_output, preprocess_cmd,
                          prepostprocess_dropout),
        d_inner_hid,
        d_model,
        relu_dropout, )
    dec_output = post_process_layer(
        enc_attn_output,
        ffd_output,
        postprocess_cmd,
        prepostprocess_dropout, )
    return dec_output


def decoder(dec_input,
            enc_output,
            dec_slf_attn_bias,
            dec_enc_attn_bias,
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            preprocess_cmd,
            postprocess_cmd,
            caches=None,
            gather_idx=None):
    """
    The decoder is composed of a stack of identical decoder_layer layers.
    """
    for i in range(n_layer):
        dec_output = decoder_layer(
            dec_input,
            enc_output,
            dec_slf_attn_bias,
            dec_enc_attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            preprocess_cmd,
            postprocess_cmd,
            cache=None if caches is None else caches[i],
            gather_idx=gather_idx)
        dec_input = dec_output
    dec_output = pre_process_layer(dec_output, preprocess_cmd,
                                   prepostprocess_dropout)
    return dec_output


def make_all_inputs(input_fields):
    """
    Define the input data layers for the transformer model.
    """
    inputs = []
    for input_field in input_fields:
        input_var = layers.data(
            name=input_field,
            shape=input_descs[input_field][0],
            dtype=input_descs[input_field][1],
            lod_level=input_descs[input_field][2]
            if len(input_descs[input_field]) == 3 else 0,
            append_batch_size=False)
        inputs.append(input_var)
    return inputs


def make_all_py_reader_inputs(input_fields, is_test=False):
    reader = layers.py_reader(
        capacity=20,
        name="test_reader" if is_test else "train_reader",
        shapes=[input_descs[input_field][0] for input_field in input_fields],
        dtypes=[input_descs[input_field][1] for input_field in input_fields],
        lod_levels=[
            input_descs[input_field][2]
            if len(input_descs[input_field]) == 3 else 0
            for input_field in input_fields
        ])
    return layers.read_file(reader), reader


def transformer(src_vocab_size,
                trg_vocab_size,
                max_length,
                n_layer,
                n_head,
                d_key,
                d_value,
                d_model,
                d_inner_hid,
                prepostprocess_dropout,
                attention_dropout,
                relu_dropout,
                preprocess_cmd,
                postprocess_cmd,
                weight_sharing,
                label_smooth_eps,
                bos_idx=0,
                use_py_reader=False,
                is_test=False):
    if weight_sharing:
        assert src_vocab_size == trg_vocab_size, (
            "Vocabularies in source and target should be same for weight sharing."
        )

    data_input_names = encoder_data_input_fields + \
                decoder_data_input_fields[:-1] + label_data_input_fields

    if use_py_reader:
        all_inputs, reader = make_all_py_reader_inputs(data_input_names,
                                                       is_test)
    else:
        all_inputs = make_all_inputs(data_input_names)
    # print("all inputs",all_inputs)
    enc_inputs_len = len(encoder_data_input_fields)
    dec_inputs_len = len(decoder_data_input_fields[:-1])
    enc_inputs = all_inputs[0:enc_inputs_len]
    dec_inputs = all_inputs[enc_inputs_len:enc_inputs_len + dec_inputs_len]
    label = all_inputs[-2]
    weights = all_inputs[-1]

    enc_output = wrap_encoder(
        src_vocab_size,
        ModelHyperParams.src_seq_len,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd,
        weight_sharing,
        enc_inputs)

    predict = wrap_decoder(
        trg_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd,
        weight_sharing,
        dec_inputs,
        enc_output, )

    # Padding index do not contribute to the total loss. The weights is used to
    # cancel padding index in calculating the loss.
    if label_smooth_eps:
        label = layers.label_smooth(
            label=layers.one_hot(
                input=label, depth=trg_vocab_size),
            epsilon=label_smooth_eps)

    cost = layers.softmax_with_cross_entropy(
        logits=predict,
        label=label,
        soft_label=True if label_smooth_eps else False)
    weighted_cost = cost * weights
    sum_cost = layers.reduce_sum(weighted_cost)
    token_num = layers.reduce_sum(weights)
    token_num.stop_gradient = True
    avg_cost = sum_cost / token_num
    return sum_cost, avg_cost, predict, token_num, reader if use_py_reader else None


def wrap_encoder_forFeature(src_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd,
                 postprocess_cmd,
                 weight_sharing,
                 enc_inputs=None,
                 bos_idx=0):
    """
    The wrapper assembles together all needed layers for the encoder.
    img, src_pos, src_slf_attn_bias = enc_inputs
    img
    """
    
    if enc_inputs is None:
        # This is used to implement independent encoder program in inference.
        conv_features, src_pos, src_slf_attn_bias = make_all_inputs(
            encoder_data_input_fields)
    else:
        conv_features, src_pos, src_slf_attn_bias = enc_inputs#
        b,t,c = conv_features.shape
        #"""
        #    insert cnn
        #"""
        #import basemodel
        # feat = basemodel.resnet_50(img)

        # mycrnn = basemodel.CRNN()
        # feat = mycrnn.ocr_convs(img,use_cudnn=TrainTaskConfig.use_gpu)
        # b, c, w, h = feat.shape
        # src_word = layers.reshape(feat, shape=[-1, c, w * h])

        #myconv8 = basemodel.conv8()
        #feat = myconv8.net(img )
        #b , c, h, w = feat.shape#h=6
        #print(feat)
        #layers.Print(feat,message="conv_feat",summarize=10)
        
        #feat =layers.conv2d(feat,c,filter_size =[4 , 1],act="relu")
        #feat = layers.pool2d(feat,pool_stride=(3,1),pool_size=(3,1))
        #src_word = layers.squeeze(feat,axes=[2]) #src_word  [-1,c,ww]
            
        #feat = layers.transpose(feat, [0,3,1,2])
        #src_word = layers.reshape(feat,[-1,w, c*h])
        #src_word = layers.im2sequence(
        #    input=feat,
        #    stride=[1, 1],
        #    filter_size=[feat.shape[2], 1])
        #layers.Print(src_word,message="src_word",summarize=10)
        
        # print('feat',feat)
        #print("src_word",src_word)
    
    enc_input = prepare_encoder(
        conv_features,
        src_pos,
        src_vocab_size,
        d_model,
        max_length,
        prepostprocess_dropout,
        bos_idx=bos_idx,
        word_emb_param_name=word_emb_param_names[0])

    enc_output = encoder(
        enc_input,
        src_slf_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd, )
    return enc_output

def wrap_encoder(src_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd,
                 postprocess_cmd,
                 weight_sharing,
                 enc_inputs=None,
                 bos_idx=0):
    """
    The wrapper assembles together all needed layers for the encoder.
    img, src_pos, src_slf_attn_bias = enc_inputs
    img
    """
    if enc_inputs is None:
        # This is used to implement independent encoder program in inference.
        src_word, src_pos, src_slf_attn_bias = make_all_inputs(
            encoder_data_input_fields)
    else:
        src_word, src_pos, src_slf_attn_bias = enc_inputs#
        #"""
        #    insert cnn
        #"""
        #import basemodel
        # feat = basemodel.resnet_50(img)

        # mycrnn = basemodel.CRNN()
        # feat = mycrnn.ocr_convs(img,use_cudnn=TrainTaskConfig.use_gpu)
        # b, c, w, h = feat.shape
        # src_word = layers.reshape(feat, shape=[-1, c, w * h])

        #myconv8 = basemodel.conv8()
        #feat = myconv8.net(img )
        #b , c, h, w = feat.shape#h=6
        #print(feat)
        #layers.Print(feat,message="conv_feat",summarize=10)
        
        #feat =layers.conv2d(feat,c,filter_size =[4 , 1],act="relu")
        #feat = layers.pool2d(feat,pool_stride=(3,1),pool_size=(3,1))
        #src_word = layers.squeeze(feat,axes=[2]) #src_word  [-1,c,ww]
            
        #feat = layers.transpose(feat, [0,3,1,2])
        #src_word = layers.reshape(feat,[-1,w, c*h])
        #src_word = layers.im2sequence(
        #    input=feat,
        #    stride=[1, 1],
        #    filter_size=[feat.shape[2], 1])
        #layers.Print(src_word,message="src_word",summarize=10)
        
        # print('feat',feat)
        #print("src_word",src_word)
    enc_input = prepare_decoder(
        src_word,
        src_pos,
        src_vocab_size,
        d_model,
        max_length,
        prepostprocess_dropout,
        bos_idx=bos_idx,
        word_emb_param_name=word_emb_param_names[0])

    enc_output = encoder(
        enc_input,
        src_slf_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd, )
    return enc_output


def wrap_decoder(trg_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd,
                 postprocess_cmd,
                 weight_sharing,
                 dec_inputs=None,
                 enc_output=None,
                 caches=None,
                 gather_idx=None,
                 bos_idx=0):
    """
    The wrapper assembles together all needed layers for the decoder.
    """
    if dec_inputs is None:
        # This is used to implement independent decoder program in inference.
        trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, enc_output = \
            make_all_inputs(decoder_data_input_fields)
    else:
        trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_inputs

    dec_input = prepare_decoder(
        trg_word,
        trg_pos,
        trg_vocab_size,
        d_model,
        max_length,
        prepostprocess_dropout,
        bos_idx=bos_idx,
        word_emb_param_name=word_emb_param_names[0]
        if weight_sharing else word_emb_param_names[1])
    dec_output = decoder(
        dec_input,
        enc_output,
        trg_slf_attn_bias,
        trg_src_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd,
        caches=caches,
        gather_idx=gather_idx)
    return dec_output
    # Reshape to 2D tensor to use GEMM instead of BatchedGEMM
    dec_output = layers.reshape(
        dec_output, shape=[-1, dec_output.shape[-1]], inplace=True)
    if weight_sharing:
        predict = layers.matmul(
            x=dec_output,
            y=fluid.default_main_program().global_block().var(
                word_emb_param_names[0]),
            transpose_y=True)
    else:
        predict = layers.fc(input=dec_output,
                            size=trg_vocab_size,
                            bias_attr=False)
    if dec_inputs is None:
        # Return probs for independent decoder program.
        predict = layers.softmax(predict)
    return predict


def fast_decode(src_vocab_size,
                trg_vocab_size,
                max_in_len,
                n_layer,
                n_head,
                d_key,
                d_value,
                d_model,
                d_inner_hid,
                prepostprocess_dropout,
                attention_dropout,
                relu_dropout,
                preprocess_cmd,
                postprocess_cmd,
                weight_sharing,
                beam_size,
                max_out_len,
                bos_idx,
                eos_idx,
                use_py_reader=False):
    """
    Use beam search to decode. Caches will be used to store states of history
    steps which can make the decoding faster.
    """
    data_input_names = encoder_data_input_fields + fast_decoder_data_input_fields

    if use_py_reader:
        all_inputs, reader = make_all_py_reader_inputs(data_input_names)
    else:
        all_inputs = make_all_inputs(data_input_names)

    enc_inputs_len = len(encoder_data_input_fields)
    dec_inputs_len = len(fast_decoder_data_input_fields)
    enc_inputs = all_inputs[0:enc_inputs_len]#enc_inputs tensor
    dec_inputs = all_inputs[enc_inputs_len:enc_inputs_len + dec_inputs_len]#dec_inputs tensor

    enc_output = wrap_encoder(
        src_vocab_size,
        ModelHyperParams.src_seq_len,##to do !!!!!????
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd,
        weight_sharing,
        enc_inputs,
        bos_idx=bos_idx)
    start_tokens, init_scores, parent_idx, trg_src_attn_bias = dec_inputs

    def beam_search():
        max_len = layers.fill_constant(
            shape=[1],
            dtype=start_tokens.dtype,
            value=max_out_len,
            force_cpu=True)
        step_idx = layers.fill_constant(
            shape=[1], dtype=start_tokens.dtype, value=0, force_cpu=True)
        cond = layers.less_than(x=step_idx, y=max_len)  # default force_cpu=True
        while_op = layers.While(cond)
        # array states will be stored for each step.
        ids = layers.array_write(
            layers.reshape(start_tokens, (-1, 1)), step_idx)
        scores = layers.array_write(init_scores, step_idx)
        # cell states will be overwrited at each step.
        # caches contains states of history steps in decoder self-attention
        # and static encoder output projections in encoder-decoder attention
        # to reduce redundant computation.
        caches = [
            {
                "k":  # for self attention
                layers.fill_constant_batch_size_like(
                    input=start_tokens,
                    shape=[-1, n_head, 0, d_key],
                    dtype=enc_output.dtype,
                    value=0),
                "v":  # for self attention
                layers.fill_constant_batch_size_like(
                    input=start_tokens,
                    shape=[-1, n_head, 0, d_value],
                    dtype=enc_output.dtype,
                    value=0),
                "static_k":  # for encoder-decoder attention
                layers.create_tensor(dtype=enc_output.dtype),
                "static_v":  # for encoder-decoder attention
                layers.create_tensor(dtype=enc_output.dtype)
            } for i in range(n_layer)
        ]

        with while_op.block():
            pre_ids = layers.array_read(array=ids, i=step_idx)
            # Since beam_search_op dosen't enforce pre_ids' shape, we can do
            # inplace reshape here which actually change the shape of pre_ids.
            pre_ids = layers.reshape(pre_ids, (-1, 1, 1), inplace=True)
            pre_scores = layers.array_read(array=scores, i=step_idx)
            # gather cell states corresponding to selected parent
            pre_src_attn_bias = layers.gather(
                trg_src_attn_bias, index=parent_idx)
            pre_pos = layers.elementwise_mul(
                x=layers.fill_constant_batch_size_like(
                    input=pre_src_attn_bias,  # cann't use lod tensor here
                    value=1,
                    shape=[-1, 1, 1],
                    dtype=pre_ids.dtype),
                y=step_idx,
                axis=0)
            logits = wrap_decoder(
                trg_vocab_size,
                max_in_len,
                n_layer,
                n_head,
                d_key,
                d_value,
                d_model,
                d_inner_hid,
                prepostprocess_dropout,
                attention_dropout,
                relu_dropout,
                preprocess_cmd,
                postprocess_cmd,
                weight_sharing,
                dec_inputs=(pre_ids, pre_pos, None, pre_src_attn_bias),
                enc_output=enc_output,
                caches=caches,
                gather_idx=parent_idx,
                bos_idx=bos_idx)
            # intra-beam topK
            topk_scores, topk_indices = layers.topk(
                input=layers.softmax(logits), k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(topk_scores), y=pre_scores, axis=0)
            # beam_search op uses lod to differentiate branches.
            accu_scores = layers.lod_reset(accu_scores, pre_ids)
            # topK reduction across beams, also contain special handle of
            # end beams and end sentences(batch reduction)
            selected_ids, selected_scores, gather_idx = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=eos_idx,
                return_parent_idx=True)
            layers.increment(x=step_idx, value=1.0, in_place=True)
            # cell states(caches) have been updated in wrap_decoder,
            # only need to update beam search states here.
            layers.array_write(selected_ids, i=step_idx, array=ids)
            layers.array_write(selected_scores, i=step_idx, array=scores)
            layers.assign(gather_idx, parent_idx)
            layers.assign(pre_src_attn_bias, trg_src_attn_bias)
            length_cond = layers.less_than(x=step_idx, y=max_len)
            finish_cond = layers.logical_not(layers.is_empty(x=selected_ids))
            layers.logical_and(x=length_cond, y=finish_cond, out=cond)

        finished_ids, finished_scores = layers.beam_search_decode(
            ids, scores, beam_size=beam_size, end_id=eos_idx)
        return finished_ids, finished_scores

    finished_ids, finished_scores = beam_search()
    return finished_ids, finished_scores, reader if use_py_reader else None