ocr_db_crnn.cc 20.8 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <chrono>
cuicheng01's avatar
cuicheng01 committed
16
17
#include "paddle_api.h" // NOLINT
#include "paddle_place.h"
WenmuZhou's avatar
WenmuZhou committed
18
19
20
21

#include "cls_process.h"
#include "crnn_process.h"
#include "db_post_process.h"
cuicheng01's avatar
cuicheng01 committed
22
#include "AutoLog/auto_log/lite_autolog.h"
WenmuZhou's avatar
WenmuZhou committed
23
24
25
26
27
28
29
30
31

using namespace paddle::lite_api; // NOLINT
using namespace std;

// fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
void NeonMeanScale(const float *din, float *dout, int size,
                   const std::vector<float> mean,
                   const std::vector<float> scale) {
  if (mean.size() != 3 || scale.size() != 3) {
cuicheng01's avatar
cuicheng01 committed
32
    std::cerr << "[ERROR] mean or scale size must equal to 3" << std::endl;
WenmuZhou's avatar
WenmuZhou committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    exit(1);
  }
  float32x4_t vmean0 = vdupq_n_f32(mean[0]);
  float32x4_t vmean1 = vdupq_n_f32(mean[1]);
  float32x4_t vmean2 = vdupq_n_f32(mean[2]);
  float32x4_t vscale0 = vdupq_n_f32(scale[0]);
  float32x4_t vscale1 = vdupq_n_f32(scale[1]);
  float32x4_t vscale2 = vdupq_n_f32(scale[2]);

  float *dout_c0 = dout;
  float *dout_c1 = dout + size;
  float *dout_c2 = dout + size * 2;

  int i = 0;
  for (; i < size - 3; i += 4) {
    float32x4x3_t vin3 = vld3q_f32(din);
    float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
    float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
    float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
    float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
    float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
    float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
    vst1q_f32(dout_c0, vs0);
    vst1q_f32(dout_c1, vs1);
    vst1q_f32(dout_c2, vs2);

    din += 12;
    dout_c0 += 4;
    dout_c1 += 4;
    dout_c2 += 4;
  }
  for (; i < size; i++) {
    *(dout_c0++) = (*(din++) - mean[0]) * scale[0];
    *(dout_c1++) = (*(din++) - mean[1]) * scale[1];
    *(dout_c2++) = (*(din++) - mean[2]) * scale[2];
  }
}

// resize image to a size multiple of 32 which is required by the network
cv::Mat DetResizeImg(const cv::Mat img, int max_size_len,
                     std::vector<float> &ratio_hw) {
  int w = img.cols;
  int h = img.rows;

  float ratio = 1.f;
  int max_wh = w >= h ? w : h;
  if (max_wh > max_size_len) {
    if (h > w) {
      ratio = static_cast<float>(max_size_len) / static_cast<float>(h);
    } else {
      ratio = static_cast<float>(max_size_len) / static_cast<float>(w);
    }
  }

  int resize_h = static_cast<int>(float(h) * ratio);
  int resize_w = static_cast<int>(float(w) * ratio);
  if (resize_h % 32 == 0)
    resize_h = resize_h;
  else if (resize_h / 32 < 1 + 1e-5)
    resize_h = 32;
  else
    resize_h = (resize_h / 32 - 1) * 32;

  if (resize_w % 32 == 0)
    resize_w = resize_w;
  else if (resize_w / 32 < 1 + 1e-5)
    resize_w = 32;
  else
    resize_w = (resize_w / 32 - 1) * 32;

  cv::Mat resize_img;
  cv::resize(img, resize_img, cv::Size(resize_w, resize_h));

  ratio_hw.push_back(static_cast<float>(resize_h) / static_cast<float>(h));
  ratio_hw.push_back(static_cast<float>(resize_w) / static_cast<float>(w));
  return resize_img;
}

cv::Mat RunClsModel(cv::Mat img, std::shared_ptr<PaddlePredictor> predictor_cls,
                    const float thresh = 0.9) {
  std::vector<float> mean = {0.5f, 0.5f, 0.5f};
  std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};

  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat crop_img;
  img.copyTo(crop_img);
  cv::Mat resize_img;

  int index = 0;
  float wh_ratio =
      static_cast<float>(crop_img.cols) / static_cast<float>(crop_img.rows);

  resize_img = ClsResizeImg(crop_img);
  resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);

  const float *dimg = reinterpret_cast<const float *>(resize_img.data);

  std::unique_ptr<Tensor> input_tensor0(std::move(predictor_cls->GetInput(0)));
  input_tensor0->Resize({1, 3, resize_img.rows, resize_img.cols});
  auto *data0 = input_tensor0->mutable_data<float>();

  NeonMeanScale(dimg, data0, resize_img.rows * resize_img.cols, mean, scale);
  // Run CLS predictor
  predictor_cls->Run();

  // Get output and run postprocess
  std::unique_ptr<const Tensor> softmax_out(
      std::move(predictor_cls->GetOutput(0)));
  auto *softmax_scores = softmax_out->mutable_data<float>();
  auto softmax_out_shape = softmax_out->shape();
  float score = 0;
  int label = 0;
  for (int i = 0; i < softmax_out_shape[1]; i++) {
    if (softmax_scores[i] > score) {
      score = softmax_scores[i];
      label = i;
    }
  }
  if (label % 2 == 1 && score > thresh) {
    cv::rotate(srcimg, srcimg, 1);
  }
  return srcimg;
}

void RunRecModel(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat img,
                 std::shared_ptr<PaddlePredictor> predictor_crnn,
                 std::vector<std::string> &rec_text,
                 std::vector<float> &rec_text_score,
                 std::vector<std::string> charactor_dict,
                 std::shared_ptr<PaddlePredictor> predictor_cls,
cuicheng01's avatar
cuicheng01 committed
164
165
                 int use_direction_classify,
                 std::vector<double> *times) {
WenmuZhou's avatar
WenmuZhou committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
  std::vector<float> mean = {0.5f, 0.5f, 0.5f};
  std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};

  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat crop_img;
  cv::Mat resize_img;

  int index = 0;
  for (int i = boxes.size() - 1; i >= 0; i--) {
    crop_img = GetRotateCropImage(srcimg, boxes[i]);
    if (use_direction_classify >= 1) {
      crop_img = RunClsModel(crop_img, predictor_cls);
    }
    float wh_ratio =
        static_cast<float>(crop_img.cols) / static_cast<float>(crop_img.rows);

    resize_img = CrnnResizeImg(crop_img, wh_ratio);
    resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);

    const float *dimg = reinterpret_cast<const float *>(resize_img.data);

    std::unique_ptr<Tensor> input_tensor0(
        std::move(predictor_crnn->GetInput(0)));
    input_tensor0->Resize({1, 3, resize_img.rows, resize_img.cols});
    auto *data0 = input_tensor0->mutable_data<float>();

    NeonMeanScale(dimg, data0, resize_img.rows * resize_img.cols, mean, scale);
    //// Run CRNN predictor
    predictor_crnn->Run();

    // Get output and run postprocess
    std::unique_ptr<const Tensor> output_tensor0(
        std::move(predictor_crnn->GetOutput(0)));
    auto *predict_batch = output_tensor0->data<float>();
    auto predict_shape = output_tensor0->shape();

    // ctc decode
    std::string str_res;
    int argmax_idx;
    int last_index = 0;
    float score = 0.f;
    int count = 0;
    float max_value = 0.0f;

    for (int n = 0; n < predict_shape[1]; n++) {
      argmax_idx = int(Argmax(&predict_batch[n * predict_shape[2]],
                              &predict_batch[(n + 1) * predict_shape[2]]));
      max_value =
          float(*std::max_element(&predict_batch[n * predict_shape[2]],
                                  &predict_batch[(n + 1) * predict_shape[2]]));
WenmuZhou's avatar
WenmuZhou committed
217
      if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
WenmuZhou's avatar
WenmuZhou committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        score += max_value;
        count += 1;
        str_res += charactor_dict[argmax_idx];
      }
      last_index = argmax_idx;
    }
    score /= count;
    rec_text.push_back(str_res);
    rec_text_score.push_back(score);
  }
}

std::vector<std::vector<std::vector<int>>>
RunDetModel(std::shared_ptr<PaddlePredictor> predictor, cv::Mat img,
cuicheng01's avatar
cuicheng01 committed
232
            std::map<std::string, double> Config, std::vector<double> *times) {
WenmuZhou's avatar
WenmuZhou committed
233
234
  // Read img
  int max_side_len = int(Config["max_side_len"]);
WenmuZhou's avatar
WenmuZhou committed
235
  int det_db_use_dilate = int(Config["det_db_use_dilate"]);
WenmuZhou's avatar
WenmuZhou committed
236
237
238

  cv::Mat srcimg;
  img.copyTo(srcimg);
cuicheng01's avatar
cuicheng01 committed
239
240
  
  auto preprocess_start = std::chrono::steady_clock::now();
WenmuZhou's avatar
WenmuZhou committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
  std::vector<float> ratio_hw;
  img = DetResizeImg(img, max_side_len, ratio_hw);
  cv::Mat img_fp;
  img.convertTo(img_fp, CV_32FC3, 1.0 / 255.f);

  // Prepare input data from image
  std::unique_ptr<Tensor> input_tensor0(std::move(predictor->GetInput(0)));
  input_tensor0->Resize({1, 3, img_fp.rows, img_fp.cols});
  auto *data0 = input_tensor0->mutable_data<float>();

  std::vector<float> mean = {0.485f, 0.456f, 0.406f};
  std::vector<float> scale = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
  const float *dimg = reinterpret_cast<const float *>(img_fp.data);
  NeonMeanScale(dimg, data0, img_fp.rows * img_fp.cols, mean, scale);
cuicheng01's avatar
cuicheng01 committed
255
  auto preprocess_end = std::chrono::steady_clock::now();
WenmuZhou's avatar
WenmuZhou committed
256
257

  // Run predictor
cuicheng01's avatar
cuicheng01 committed
258
  auto inference_start = std::chrono::steady_clock::now();
WenmuZhou's avatar
WenmuZhou committed
259
260
261
262
263
264
265
  predictor->Run();

  // Get output and post process
  std::unique_ptr<const Tensor> output_tensor(
      std::move(predictor->GetOutput(0)));
  auto *outptr = output_tensor->data<float>();
  auto shape_out = output_tensor->shape();
cuicheng01's avatar
cuicheng01 committed
266
  auto inference_end = std::chrono::steady_clock::now();
WenmuZhou's avatar
WenmuZhou committed
267
268

  // Save output
cuicheng01's avatar
cuicheng01 committed
269
  auto postprocess_start = std::chrono::steady_clock::now();
WenmuZhou's avatar
WenmuZhou committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
  float pred[shape_out[2] * shape_out[3]];
  unsigned char cbuf[shape_out[2] * shape_out[3]];

  for (int i = 0; i < int(shape_out[2] * shape_out[3]); i++) {
    pred[i] = static_cast<float>(outptr[i]);
    cbuf[i] = static_cast<unsigned char>((outptr[i]) * 255);
  }

  cv::Mat cbuf_map(shape_out[2], shape_out[3], CV_8UC1,
                   reinterpret_cast<unsigned char *>(cbuf));
  cv::Mat pred_map(shape_out[2], shape_out[3], CV_32F,
                   reinterpret_cast<float *>(pred));

  const double threshold = double(Config["det_db_thresh"]) * 255;
WenmuZhou's avatar
WenmuZhou committed
284
  const double max_value = 255;
WenmuZhou's avatar
WenmuZhou committed
285
  cv::Mat bit_map;
WenmuZhou's avatar
WenmuZhou committed
286
  cv::threshold(cbuf_map, bit_map, threshold, max_value, cv::THRESH_BINARY);
WenmuZhou's avatar
WenmuZhou committed
287
288
289
290
291
292
293
294
  if (det_db_use_dilate == 1) {
    cv::Mat dilation_map;
    cv::Mat dila_ele =
        cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));
    cv::dilate(bit_map, dilation_map, dila_ele);
    bit_map = dilation_map;
  }
  auto boxes = BoxesFromBitmap(pred_map, bit_map, Config);
WenmuZhou's avatar
WenmuZhou committed
295
296
297

  std::vector<std::vector<std::vector<int>>> filter_boxes =
      FilterTagDetRes(boxes, ratio_hw[0], ratio_hw[1], srcimg);
cuicheng01's avatar
cuicheng01 committed
298
299
300
301
302
303
304
305
  auto postprocess_end = std::chrono::steady_clock::now();

  std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
  times->push_back(double(preprocess_diff.count() * 1000));
  std::chrono::duration<float> inference_diff = inference_end - inference_start;
  times->push_back(double(inference_diff.count() * 1000));
  std::chrono::duration<float> postprocess_diff = postprocess_end - postprocess_start;
  times->push_back(double(postprocess_diff.count() * 1000));
WenmuZhou's avatar
WenmuZhou committed
306
307
308
309

  return filter_boxes;
}

cuicheng01's avatar
cuicheng01 committed
310
std::shared_ptr<PaddlePredictor> loadModel(std::string model_file, std::string power_mode, int num_threads) {
WenmuZhou's avatar
WenmuZhou committed
311
312
313
  MobileConfig config;
  config.set_model_from_file(model_file);

cuicheng01's avatar
cuicheng01 committed
314
315
316
317
318
319
320
321
322
323
324
325
326
  if (power_mode == "LITE_POWER_HIGH"){
      config.set_power_mode(LITE_POWER_HIGH);
  } else {
      if (power_mode == "LITE_POWER_LOW") {
          config.set_power_mode(LITE_POWER_HIGH);
      } else {
          std::cerr << "Only support LITE_POWER_HIGH or LITE_POWER_HIGH." << std::endl;
          exit(1);
      }
  }

  config.set_threads(num_threads);

WenmuZhou's avatar
WenmuZhou committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
  std::shared_ptr<PaddlePredictor> predictor =
      CreatePaddlePredictor<MobileConfig>(config);
  return predictor;
}

cv::Mat Visualization(cv::Mat srcimg,
                      std::vector<std::vector<std::vector<int>>> boxes) {
  cv::Point rook_points[boxes.size()][4];
  for (int n = 0; n < boxes.size(); n++) {
    for (int m = 0; m < boxes[0].size(); m++) {
      rook_points[n][m] = cv::Point(static_cast<int>(boxes[n][m][0]),
                                    static_cast<int>(boxes[n][m][1]));
    }
  }
  cv::Mat img_vis;
  srcimg.copyTo(img_vis);
  for (int n = 0; n < boxes.size(); n++) {
    const cv::Point *ppt[1] = {rook_points[n]};
    int npt[] = {4};
    cv::polylines(img_vis, ppt, npt, 1, 1, CV_RGB(0, 255, 0), 2, 8, 0);
  }

  cv::imwrite("./vis.jpg", img_vis);
  std::cout << "The detection visualized image saved in ./vis.jpg" << std::endl;
  return img_vis;
}

std::vector<std::string> split(const std::string &str,
                               const std::string &delim) {
  std::vector<std::string> res;
  if ("" == str)
    return res;
  char *strs = new char[str.length() + 1];
  std::strcpy(strs, str.c_str());

  char *d = new char[delim.length() + 1];
  std::strcpy(d, delim.c_str());

  char *p = std::strtok(strs, d);
  while (p) {
    string s = p;
    res.push_back(s);
    p = std::strtok(NULL, d);
  }

  return res;
}

std::map<std::string, double> LoadConfigTxt(std::string config_path) {
  auto config = ReadDict(config_path);

  std::map<std::string, double> dict;
  for (int i = 0; i < config.size(); i++) {
    std::vector<std::string> res = split(config[i], " ");
    dict[res[0]] = stod(res[1]);
  }
  return dict;
}

cuicheng01's avatar
cuicheng01 committed
386
387
388
void check_params(int argc, char **argv) {
  if (argc<=1 || (strcmp(argv[1], "det")!=0 && strcmp(argv[1], "rec")!=0 && strcmp(argv[1], "system")!=0)) {
    std::cerr << "Please choose one mode of [det, rec, system] !" << std::endl;
WenmuZhou's avatar
WenmuZhou committed
389
390
    exit(1);
  }
cuicheng01's avatar
cuicheng01 committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
  if (strcmp(argv[1], "det") == 0) {
      if (argc < 9){
        std::cerr << "[ERROR] usage:" << argv[0]
                  << " det det_model num_threads batchsize power_mode img_dir det_config lite_benchmark_value" << std::endl;
        exit(1);
      }
  }

  if (strcmp(argv[1], "rec") == 0) {
      if (argc < 9){
        std::cerr << "[ERROR] usage:" << argv[0]
                  << " rec rec_model num_threads batchsize power_mode img_dir key_txt lite_benchmark_value" << std::endl;
        exit(1);
      }
  }

  if (strcmp(argv[1], "system") == 0) {
      if (argc < 12){
        std::cerr << "[ERROR] usage:" << argv[0]
                  << " system det_model rec_model clas_model num_threads batchsize power_mode img_dir det_config key_txt lite_benchmark_value" << std::endl;
        exit(1);
      }
  }
}

void system(char **argv){
  std::string det_model_file = argv[2];
  std::string rec_model_file = argv[3];
  std::string cls_model_file = argv[4];
  std::string precision = argv[5];
  std::string num_threads = argv[6];
  std::string batchsize = argv[7];
  std::string power_mode = argv[8];
  std::string img_dir = argv[9];
  std::string det_config_path = argv[10];
  std::string dict_path = argv[11];

  if (strcmp(argv[5], "FP32") != 0 && strcmp(argv[5], "INT8") != 0) {
      std::cerr << "Only support FP32 or INT8." << std::endl;
      exit(1);
  }

  std::vector<cv::String> cv_all_img_names;
  cv::glob(img_dir, cv_all_img_names);
WenmuZhou's avatar
WenmuZhou committed
435
436

  //// load config from txt file
cuicheng01's avatar
cuicheng01 committed
437
  auto Config = LoadConfigTxt(det_config_path);
WenmuZhou's avatar
WenmuZhou committed
438
439
  int use_direction_classify = int(Config["use_direction_classify"]);

cuicheng01's avatar
cuicheng01 committed
440
441
442
443
444
445
446
  auto charactor_dict = ReadDict(dict_path);
  charactor_dict.insert(charactor_dict.begin(), "#"); // blank char for ctc
  charactor_dict.push_back(" ");

  auto det_predictor = loadModel(det_model_file, power_mode, std::stoi(num_threads));
  auto rec_predictor = loadModel(rec_model_file, power_mode, std::stoi(num_threads));
  auto cls_predictor = loadModel(cls_model_file, power_mode, std::stoi(num_threads));
WenmuZhou's avatar
WenmuZhou committed
447

cuicheng01's avatar
cuicheng01 committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
  for (int i = 0; i < cv_all_img_names.size(); ++i) {
    std::cout << "The predict img: " << cv_all_img_names[i] << std::endl;
    cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);

    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << std::endl;
      exit(1);
    }

    std::vector<double> det_times;
    auto boxes = RunDetModel(det_predictor, srcimg, Config, &det_times);
  
    std::vector<std::string> rec_text;
    std::vector<float> rec_text_score;
  
    std::vector<double> rec_times;
    RunRecModel(boxes, srcimg, rec_predictor, rec_text, rec_text_score,
                charactor_dict, cls_predictor, use_direction_classify, &rec_times);
  
    //// visualization
    auto img_vis = Visualization(srcimg, boxes);
  
    //// print recognized text
    for (int i = 0; i < rec_text.size(); i++) {
      std::cout << i << "\t" << rec_text[i] << "\t" << rec_text_score[i]
                << std::endl;
    }
  }
}

void det(int argc, char **argv) {
  std::string det_model_file = argv[2];
  std::string precision = argv[3];
  std::string num_threads = argv[4];
  std::string batchsize = argv[5];
  std::string power_mode = argv[6];
  std::string img_dir = argv[7];
  std::string det_config_path = argv[8];

  if (strcmp(argv[3], "FP32") != 0 && strcmp(argv[3], "INT8") != 0) {
      std::cerr << "Only support FP32 or INT8." << std::endl;
      exit(1);
  }

  std::vector<cv::String> cv_all_img_names;
  cv::glob(img_dir, cv_all_img_names);

  //// load config from txt file
  auto Config = LoadConfigTxt(det_config_path);

  auto det_predictor = loadModel(det_model_file, power_mode, std::stoi(num_threads));

  std::vector<double> time_info = {0, 0, 0};
  for (int i = 0; i < cv_all_img_names.size(); ++i) {
    std::cout << "The predict img: " << cv_all_img_names[i] << std::endl;
    cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);

    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << std::endl;
      exit(1);
    }

    std::vector<double> times;
    auto boxes = RunDetModel(det_predictor, srcimg, Config, &times);

    //// visualization
    auto img_vis = Visualization(srcimg, boxes);
    std::cout << boxes.size() << " bboxes have detected:" << std::endl;

    // for (int i=0; i<boxes.size(); i++){
    //   std::cout << "The " << i << " box:" << std::endl;
    //   for (int j=0; j<4; j++){
    //     for (int k=0; k<2; k++){
    //       std::cout << boxes[i][j][k] << "\t";
    //     }
    //   }
    //   std::cout << std::endl;
    // }
    time_info[0] += times[0];
    time_info[1] += times[1];
    time_info[2] += times[2];
  }

  if (strcmp(argv[9], "True") == 0) {
    AutoLogger autolog(det_model_file, 
                       0,
                       0,
                       0,
                       std::stoi(num_threads),
                       std::stoi(batchsize), 
                       "dynamic", 
                       precision, 
                       power_mode,
                       time_info, 
                       cv_all_img_names.size());
    autolog.report();
  }
}

void rec(int argc, char **argv) {
  std::string rec_model_file = argv[2];
  std::string precision = argv[3];
  std::string num_threads = argv[4];
  std::string batchsize = argv[5];
  std::string power_mode = argv[6];
  std::string img_dir = argv[7];
  std::string dict_path = argv[8];

  if (strcmp(argv[3], "FP32") != 0 && strcmp(argv[3], "INT8") != 0) {
      std::cerr << "Only support FP32 or INT8." << std::endl;
      exit(1);
  }

  std::vector<cv::String> cv_all_img_names;
  cv::glob(img_dir, cv_all_img_names);
WenmuZhou's avatar
WenmuZhou committed
563
564
565
566

  auto charactor_dict = ReadDict(dict_path);
  charactor_dict.insert(charactor_dict.begin(), "#"); // blank char for ctc
  charactor_dict.push_back(" ");
WenmuZhou's avatar
WenmuZhou committed
567

cuicheng01's avatar
cuicheng01 committed
568
  auto rec_predictor = loadModel(rec_model_file, power_mode, std::stoi(num_threads));
WenmuZhou's avatar
WenmuZhou committed
569

cuicheng01's avatar
cuicheng01 committed
570
  std::shared_ptr<PaddlePredictor> cls_predictor;
WenmuZhou's avatar
WenmuZhou committed
571

cuicheng01's avatar
cuicheng01 committed
572
573
574
575
  std::vector<double> time_info = {0, 0, 0};
  for (int i = 0; i < cv_all_img_names.size(); ++i) {
    std::cout << "The predict img: " << cv_all_img_names[i] << std::endl;
    cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
WenmuZhou's avatar
WenmuZhou committed
576

cuicheng01's avatar
cuicheng01 committed
577
578
579
580
    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << std::endl;
      exit(1);
    }
WenmuZhou's avatar
WenmuZhou committed
581

cuicheng01's avatar
cuicheng01 committed
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
    int width = srcimg.cols;
    int height = srcimg.rows;
    std::vector<int> upper_left = {0, 0};
    std::vector<int> upper_right = {width, 0};
    std::vector<int> lower_right = {width, height};
    std::vector<int> lower_left  = {0, height};
    std::vector<std::vector<int>> box = {upper_left, upper_right, lower_right, lower_left};
    std::vector<std::vector<std::vector<int>>> boxes = {box};

    std::vector<std::string> rec_text;
    std::vector<float> rec_text_score;
    std::vector<double> times;
    RunRecModel(boxes, srcimg, rec_predictor, rec_text, rec_text_score,
                charactor_dict, cls_predictor, 0, &times);
  
    //// print recognized text
    for (int i = 0; i < rec_text.size(); i++) {
      std::cout << i << "\t" << rec_text[i] << "\t" << rec_text_score[i]
                << std::endl;
    }
  }
  // TODO: support autolog
  if (strcmp(argv[9], "True") == 0) {
    AutoLogger autolog(rec_model_file, 
                       0,
                       0,
                       0,
                       std::stoi(num_threads),
                       std::stoi(batchsize), 
                       "dynamic", 
                       precision, 
                       power_mode,
                       time_info, 
                       cv_all_img_names.size());
    autolog.report();
  }
}

int main(int argc, char **argv) {
  check_params(argc, argv);
  std::cout << "mode: " << argv[1] << endl;
WenmuZhou's avatar
WenmuZhou committed
623

cuicheng01's avatar
cuicheng01 committed
624
625
  if (strcmp(argv[1], "system") == 0) {
    system(argv);
WenmuZhou's avatar
WenmuZhou committed
626
627
  }

cuicheng01's avatar
cuicheng01 committed
628
629
630
631
632
633
634
  if (strcmp(argv[1], "det") == 0) {
    det(argc, argv);
  }

  if (strcmp(argv[1], "rec") == 0) {
    rec(argc, argv);
  }
WenmuZhou's avatar
WenmuZhou committed
635
636

  return 0;
cuicheng01's avatar
cuicheng01 committed
637
}