test.sh 8.22 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
#!/bin/bash 
LDOUBLEV's avatar
LDOUBLEV committed
2
3
4
# Usage:
# bash test/test.sh ./test/params.txt 'lite_train_infer'

LDOUBLEV's avatar
LDOUBLEV committed
5
6
7
8
9
10
11
12
13
14
15
16
17
FILENAME=$1

# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer']
MODE=$2
# prepare pretrained weights and dataset 
wget -nc -P  ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
if [ ${MODE} = "lite_train_infer" ];then
    # pretrain lite train data
    rm -rf ./train_data/icdar2015
    wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar
    cd ./train_data/ && tar xf icdar2015_lite.tar && 
    ln -s ./icdar2015_lite ./icdar2015
    cd ../
LDOUBLEV's avatar
LDOUBLEV committed
18
19
    epoch=10
    eval_batch_step=10
LDOUBLEV's avatar
LDOUBLEV committed
20
21
22
23
elif [ ${MODE} = "whole_train_infer" ];then
    rm -rf ./train_data/icdar2015
    wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar
    cd ./train_data/ && tar xf icdar2015.tar && cd ../
LDOUBLEV's avatar
LDOUBLEV committed
24
25
    epoch=300
    eval_batch_step=200
LDOUBLEV's avatar
LDOUBLEV committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
else
    echo "Do Nothing"
fi


dataline=$(cat ${FILENAME})
# parser params
IFS=$'\n'
lines=(${dataline})
function func_parser(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[1]}
    echo ${tmp}
}
IFS=$'\n'
# The training params
train_model_list=$(func_parser "${lines[0]}")
gpu_list=$(func_parser "${lines[1]}")
auto_cast_list=$(func_parser "${lines[2]}")
slim_trainer_list=$(func_parser "${lines[3]}")
python=$(func_parser "${lines[4]}")
# inference params
inference=$(func_parser "${lines[5]}")
devices=$(func_parser "${lines[6]}")
use_mkldnn_list=$(func_parser "${lines[7]}")
cpu_threads_list=$(func_parser "${lines[8]}")
rec_batch_size_list=$(func_parser "${lines[9]}")
gpu_trt_list=$(func_parser "${lines[10]}")
gpu_precision_list=$(func_parser "${lines[11]}")
LDOUBLEV's avatar
LDOUBLEV committed
57
img_dir="./train_data/icdar2015/text_localization/ch4_test_images/"
LDOUBLEV's avatar
LDOUBLEV committed
58
# train superparameters
LDOUBLEV's avatar
LDOUBLEV committed
59
60
#epoch=$(func_parser "${lines[12]}")
#checkpoints=$(func_parser "${lines[13]}")
LDOUBLEV's avatar
LDOUBLEV committed
61
62
63


for train_model in ${train_model_list[*]}; do 
LDOUBLEV's avatar
LDOUBLEV committed
64
    if [ ${train_model} = "ocr_det" ];then
LDOUBLEV's avatar
LDOUBLEV committed
65
66
        model_name="det"
        yml_file="configs/det/det_mv3_db.yml"
LDOUBLEV's avatar
LDOUBLEV committed
67
    elif [ ${train_model} = "ocr_rec" ];then
LDOUBLEV's avatar
LDOUBLEV committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        model_name="rec"
        yml_file="configs/rec/rec_mv3_none_bilstm_ctc.yml"
    else
        model_name="det"
        yml_file="configs/det/det_mv3_db.yml"
    fi
    IFS="|"
    for gpu in ${gpu_list[*]}; do
        use_gpu=True
        if [ ${gpu} = "-1" ];then
            lanuch=""
            use_gpu=False
        elif [ ${#gpu} -le 1 ];then
            launch=""
        else
            launch="-m paddle.distributed.launch --log_dir=./debug/ --gpus ${gpu}"
        fi
        # echo "model_name: ${model_name}  yml_file: ${yml_file}   launch: ${launch}   gpu: ${gpu}" 
        for auto_cast in ${auto_cast_list[*]}; do 
            for slim_trainer in ${slim_trainer_list[*]}; do 
                if [ ${slim_trainer} = "norm" ]; then
                    trainer="tools/train.py"
                    export_model="tools/export_model.py"
                elif [ ${slim_trainer} = "quant" ]; then
                    trainer="deploy/slim/quantization/quant.py"
                    export_model="deploy/slim/quantization/export_model.py"
                elif [ ${slim_trainer} = "prune" ]; then
                    trainer="deploy/slim/prune/sensitivity_anal.py"
                    export_model="deploy/slim/prune/export_prune_model.py"
                elif [ ${slim_trainer} = "distill" ]; then
                    trainer="deploy/slim/distill/train_dml.py"
                    export_model="deploy/slim/distill/export_distill_model.py"
                else
                    trainer="tools/train.py"
                    export_model="tools/export_model.py"
                fi
                # dataset="Train.dataset.data_dir=${train_dir}  Train.dataset.label_file_list=${train_label_file}  Eval.dataset.data_dir=${eval_dir} Eval.dataset.label_file_list=${eval_label_file}"
                save_log=${log_path}/${model_name}_${slim_trainer}_autocast_${auto_cast}_gpuid_${gpu}
LDOUBLEV's avatar
LDOUBLEV committed
106
                
LDOUBLEV's avatar
LDOUBLEV committed
107
                ${python}  ${launch}  ${trainer}  -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast}  Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu}
LDOUBLEV's avatar
LDOUBLEV committed
108
109
110
111
112
113
114
115
                ${python} ${export_model} -c ${yml_file} -o Global.pretrained_model=${save_log}/best_accuracy Global.save_inference_dir=${save_log}/export_inference/ Global.save_model_dir=${save_log} 
                if [ $? -eq 0 ]; then
                    echo -e "\033[33m training of $model_name successfully!\033[0m" | tee -a ${save_log}/train.log
                else
                    cat ${save_log}/train.log
                    echo -e "\033[33m training of $model_name failed!\033[0m" | tee -a ${save_log}/train.log
                fi
               
LDOUBLEV's avatar
LDOUBLEV committed
116
117
118
119
120
121
122
123
124
125
126
127
128
                if [ "${model_name}" = "det" ]; then 
                    export rec_batch_size_list=( "1" )
                    inference="tools/infer/predict_det.py"
                elif [ "${model_name}" = "rec" ]; then
                    inference="tools/infer/predict_rec.py"
                fi
                # inference 
                for device in ${devices[*]}; do 
                    if [ ${device} = "cpu" ]; then
                        for use_mkldnn in ${use_mkldnn_list[*]}; do
                            for threads in ${cpu_threads_list[*]}; do
                                for rec_batch_size in ${rec_batch_size_list[*]}; do    
                                    echo ${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir}  --image_dir=${img_dir}  --save_log_path=${log_path}/${model_name}_${slim_trainer}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_recbatchnum_${rec_batch_size}_infer.log
LDOUBLEV's avatar
LDOUBLEV committed
129
                                    ${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir}  --image_dir=${img_dir}  --save_log_path=${log_path}/${model_name}_${slim_trainer}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_recbatchnum_${rec_batch_size}_infer.log
LDOUBLEV's avatar
LDOUBLEV committed
130
131
132
133
134
135
136
                                    if [ $? -eq 0 ]; then
                                        echo -e "\033[33m training of $model_name successfully!\033[0m" | tee -a ${log_path}${model_name}_${slim_trainer}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_recbatchnum_${rec_batch_size}_infer.log
                                    else
                                        cat ${log_path}${model_name}_${slim_trainer}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_recbatchnum_${rec_batch_size}_infer.log
                                        echo -e "\033[33m training of $model_name failed!\033[0m" | tee -a ${log_path}${model_name}_${slim_trainer}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_recbatchnum_${rec_batch_size}_infer.log
                                    fi

LDOUBLEV's avatar
LDOUBLEV committed
137
138
139
140
141
142
143
144
145
146
147
                                done
                            done
                        done
                    else 
                        for use_trt in ${gpu_trt_list[*]}; do
                            for precision in ${gpu_precision_list[*]}; do
                                if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then
                                    continue
                                fi
                                for rec_batch_size in ${rec_batch_size_list[*]}; do
                                    # echo "${model_name}  ${det_model_dir} ${rec_model_dir}, use_trt: ${use_trt}   use_fp16: ${use_fp16}"
LDOUBLEV's avatar
LDOUBLEV committed
148
                                    ${python} ${inference} --use_gpu=True --use_tensorrt=${use_trt}  --precision=${precision} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${log_path}/${model_name}_${slim_trainer}_gpu_usetensorrt_${use_trt}_usefp16_${precision}_recbatchnum_${rec_batch_size}_infer.log
LDOUBLEV's avatar
LDOUBLEV committed
149
150
151
152
153
154
155
156
157
                                done
                            done
                        done
                    fi
                done
            done
        done
    done
done