db_post_process.cpp 10 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <iostream>
#include <vector>
#include <math.h>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "clipper.hpp"
#include "clipper.cpp"


void getcontourarea(float ** box, float unclip_ratio, float & distance){
  int pts_num=4;
  float area = 0.0f;
  float dist = 0.0f;
  for (int i=0; i<pts_num; i++){
    area += box[i][0] * box[(i+1)%pts_num][1] - box[i][1] * box[(i + 1) % pts_num][0];
    dist += sqrtf( (box[i][0] - box[(i + 1) % pts_num][0]) * (box[i][0] - box[(i + 1) % pts_num][0]) + (box[i][1] - box[(i + 1) % pts_num][1]) * (box[i][1] - box[(i + 1) % pts_num][1]) );
  }
  area = fabs(float(area/2.0));

  distance = area * unclip_ratio / dist;

}

cv::RotatedRect unclip(float ** box){
  float unclip_ratio = 2.0;
  float distance = 1.0;

  getcontourarea(box, unclip_ratio, distance);

  ClipperLib::ClipperOffset offset;
  ClipperLib::Path p;
  p << ClipperLib::IntPoint(int(box[0][0]), int(box[0][1])) << ClipperLib::IntPoint(int(box[1][0]), int(box[1][1])) <<
    ClipperLib::IntPoint(int(box[2][0]), int(box[2][1])) << ClipperLib::IntPoint(int(box[3][0]), int(box[3][1]));
  offset.AddPath(p, ClipperLib::jtRound, ClipperLib::etClosedPolygon);

  ClipperLib::Paths soln;
  offset.Execute(soln, distance);
  std::vector<cv::Point2f> points;

  for (int j=0; j<soln.size(); j++){
    for (int i=0; i< soln[soln.size()-1].size(); i++){
      points.emplace_back(soln[j][i].X, soln[j][i].Y);
    }
  }
  cv::RotatedRect res = cv::minAreaRect(points);

  return res;
}

float ** Mat2Vec(cv::Mat mat)
{
  auto **array = new float*[mat.rows];
  for (int i = 0; i<mat.rows; ++i)
    array[i] = new float[mat.cols];
  for (int i = 0; i < mat.rows; ++i)
  {
    for (int j = 0; j < mat.cols; ++j)
    {
      array[i][j] = mat.at<float>(i, j);
    }
  }

  return array;
}

void quickSort(float ** s, int l, int r)
{
  if (l < r)
  {
    int i = l, j = r;
    float x = s[l][0];
    float * xp = s[l];
    while (i < j)
    {
      while(i < j && s[j][0]>= x)
        j--;
      if(i < j)
        std::swap(s[i++], s[j]);
      while(i < j && s[i][0]< x)
        i++;
      if(i < j)
        std::swap(s[j--], s[i]);
    }
    s[i] = xp;
    quickSort(s, l, i - 1);
    quickSort(s, i + 1, r);
  }
}

void quickSort_vector(std::vector<std::vector<int>> & box, int l, int r, int axis){
  if (l < r){
    int i = l, j = r;
    int x = box[l][axis];
    std::vector<int> xp (box[l]);
    while (i < j)
    {
      while(i < j && box[j][axis]>= x)
        j--;
      if(i < j)
        std::swap(box[i++], box[j]);
      while(i < j && box[i][axis]< x)
        i++;
      if(i < j)
        std::swap(box[j--], box[i]);
    }
    box[i] = xp;
    quickSort_vector(box, l, i - 1, axis);
    quickSort_vector(box, i + 1, r, axis);
  }
}

std::vector<std::vector<int>> order_points_clockwise(std::vector<std::vector<int>> pts){
  std::vector<std::vector<int>> box = pts;
  quickSort_vector(box, 0, int(box.size()-1), 0);
  std::vector<std::vector<int>> leftmost = {box[0], box[1]};
  std::vector<std::vector<int>> rightmost = {box[2], box[3]};

  if (leftmost[0][1]>leftmost[1][1])
    std::swap(leftmost[0], leftmost[1]);

  if (rightmost[0][1]> rightmost[1][1])
    std::swap(rightmost[0], rightmost[1]);

  std::vector<std::vector<int>> rect = {leftmost[0], rightmost[0], rightmost[1], leftmost[1]};
  return rect;
}

float ** get_mini_boxes(cv::RotatedRect box, float & ssid){
  ssid = box.size.width>=box.size.height?box.size.height:box.size.width;

  cv::Mat points;
  cv::boxPoints(box, points);
  // sorted box points
  auto array = Mat2Vec(points);
  quickSort(array, 0, 3);

  float * idx1=array[0], *idx2=array[1], *idx3=array[2], *idx4=array[3];
  if (array[3][1]<=array[2][1]) {
    idx2 = array[3];
    idx3 = array[2];
  }
  else{
    idx2 = array[2];
    idx3 = array[3];
  }
  if (array[1][1]<=array[0][1]){
    idx1 = array[1];
    idx4 = array[0];
  }
  else{
    idx1 = array[0];
    idx4 = array[1];
  }

  array[0] = idx1;
  array[1] = idx2;
  array[2] = idx3;
  array[3] = idx4;

  return array;
}

template<class T>
T clamp(T x, T min, T max)
{
  if (x > max)
    return max;
  if (x < min)
    return min;
  return x;
}
float clampf(float x, float min, float max){
  if (x > max)
    return max;
  if (x < min)
    return min;
  return x;
}


float box_score_fast(float ** box_array, cv::Mat pred){
  auto array=box_array;
  int width = pred.cols;
  int height = pred.rows;

  float box_x[4]={array[0][0], array[1][0], array[2][0], array[3][0]};
  float box_y[4]={array[0][1], array[1][1], array[2][1], array[3][1]};

  int xmin = clamp(int(std::floorf(*(std::min_element(box_x, box_x+4)))), 0, width - 1);
  int xmax = clamp(int(std::ceilf(*(std::max_element(box_x, box_x+4)))), 0, width - 1);
  int ymin = clamp(int(std::floorf(*(std::min_element(box_y, box_y+4)))), 0, height - 1);
  int ymax = clamp(int(std::ceilf(*(std::max_element(box_y, box_y+4)))), 0, height - 1);

  cv::Mat mask;
  mask = cv::Mat::zeros(ymax - ymin + 1, xmax - xmin + 1, CV_8UC1);

  cv::Point root_point[4];
  root_point[0] = cv::Point(int(array[0][0])-xmin, int(array[0][1])-ymin);
  root_point[1] = cv::Point(int(array[1][0])-xmin, int(array[1][1])-ymin);
  root_point[2] = cv::Point(int(array[2][0])-xmin, int(array[2][1])-ymin);
  root_point[3] = cv::Point(int(array[3][0])-xmin, int(array[3][1])-ymin);
  const cv::Point* ppt[1] = {root_point};
  int npt[] = {4};
  cv::fillPoly(mask, ppt, npt, 1, cv::Scalar(1));

  cv::Mat croppedImg;
  pred(cv::Rect(xmin, ymin, xmax-xmin+1,ymax-ymin+1)).copyTo(croppedImg);

  auto score = cv::mean(croppedImg, mask)[0];
  return score;
}


std::vector<std::vector<std::vector<int>>> boxes_from_bitmap(const cv::Mat pred, const cv::Mat bitmap) {
  const int min_size=3;
  const int max_candidates = 1000;
  const float box_thresh=0.5;

  int width = bitmap.cols;
  int height = bitmap.rows;

  std::vector<std::vector<cv::Point>> contours;
  std::vector<cv::Vec4i> hierarchy;

  cv::findContours(bitmap, contours, hierarchy, cv::RETR_LIST, cv::CHAIN_APPROX_SIMPLE);

  int num_contours = contours.size() >= max_candidates ? max_candidates : contours.size();

  std::vector<std::vector<std::vector<int>>> boxes;

  for (int _i = 0; _i < num_contours; _i++) {
    float ssid;
    cv::RotatedRect box = cv::minAreaRect(contours[_i]);
    auto array = get_mini_boxes(box, ssid);

    auto box_for_unclip = array;
    //end get_mini_box

    if (ssid< min_size) {
      continue;
    }

    float score;
    score = box_score_fast(array, pred);
    //end box_score_fast
    if (score < box_thresh)
      continue;


    // start for unclip
    cv::RotatedRect points = unclip(box_for_unclip);
    // end for unclip

    cv::RotatedRect clipbox = points;
    auto cliparray = get_mini_boxes(clipbox, ssid);

    if (ssid < min_size+2) continue;

    int dest_width=pred.cols;
    int dest_height=pred.rows;
    std::vector<std::vector<int>> intcliparray;

    for (int num_pt=0; num_pt<4; num_pt++){
      std::vector<int> a  { int( clampf(roundf(cliparray[num_pt][0]/float(width)*float(dest_width)), 0, float(dest_width)) ),
                            int( clampf(roundf(cliparray[num_pt][1]/float(height)*float(dest_height)), 0, float(dest_height)) )};
      intcliparray.push_back(a);
    }
    boxes.push_back(intcliparray);

  }//end for
  return boxes;
}

int _max(int a, int b){
  return a>=b?a:b;
}

int _min(int a, int b){
  return a>=b?b:a;
}

std::vector<std::vector<std::vector<int>>>  filter_tag_det_res(std::vector<std::vector<std::vector<int>>> boxes,
        float ratio_h, float ratio_w, cv::Mat srcimg){
  int oriimg_h = srcimg.rows;
  int oriimg_w = srcimg.cols;

  std::vector<std::vector<std::vector<int>>> root_points;
  for (int n=0; n<boxes.size(); n++){
    boxes[n] = order_points_clockwise(boxes[n]);
    for (int m=0; m< boxes[0].size(); m++){
      boxes[n][m][0] /= ratio_w;
      boxes[n][m][1] /= ratio_h;

      boxes[n][m][0] = int(_min(_max(boxes[n][m][0], 0), oriimg_w-1));
      boxes[n][m][1] = int(_min(_max(boxes[n][m][1], 0), oriimg_h-1));
    }
  }

  for(int n=0; n<boxes.size(); n++){
  int rect_width, rect_height;
  rect_width = int(sqrt(pow(boxes[n][0][0] - boxes[n][1][0], 2) + pow(boxes[n][0][1] - boxes[n][1][1], 2)));
  rect_height = int(sqrt(pow(boxes[n][0][0] - boxes[n][3][0], 2) + pow(boxes[n][0][1] - boxes[n][3][1], 2)));
  if (rect_width <=10 || rect_height<=10)
    continue;
  root_points.push_back(boxes[n]);
  }
  return root_points;
}

/*
using namespace std;
// read data from txt file
cv::Mat readtxt2(std::string path, int imgw, int imgh, int imgc) {
  std::cout << "read data file from txt file! " << std::endl;
  ifstream in(path);
  string line;
  int count = 0;
  int i = 0, j = 0;
  std::vector<float> img_mean = {0.485, 0.456, 0.406};
  std::vector<float> img_std = {0.229, 0.224, 0.225};

  float trainData[imgh][imgw*imgc];

  while (getline(in, line)) {
    stringstream ss(line);
    double x;
    while (ss >> x) {
//      trainData[i][j] = float(x) * img_std[j % 3] + img_mean[j % 3];
      trainData[i][j] = float(x);
      j++;
    }
    i++;
    j = 0;
  }

  cv::Mat pred_map(imgh, imgw*imgc, CV_32FC1, (float *) trainData);
  cv::Mat reshape_img = pred_map.reshape(imgc, imgh);
  return reshape_img;
}
 */
//using namespace std;
//
//void writetxt(vector<vector<float>> data, std::string save_path){
//
//  ofstream fout(save_path);
//
//  for (int i = 0; i < data.size(); i++) {
//    for (int j=0; j< data[0].size(); j++){
//      fout << data[i][j] << " ";
//    }
//    fout << endl;
//  }
//  fout << endl;
//  fout.close();
//}