ocr_db_crnn.cc 10 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <iostream>
#include <vector>
#include <chrono>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"  // NOLINT

#include "utils/db_post_process.cpp"
#include "utils/crnn_process.cpp"
#include <cstring>
#include <fstream>

using namespace paddle::lite_api;  // NOLINT

struct Object {
  cv::Rect rec;
  int class_id;
  float prob;
};

int64_t ShapeProduction(const shape_t& shape) {
  int64_t res = 1;
  for (auto i : shape) res *= i;
  return res;
}

// fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
void neon_mean_scale(const float* din,
                     float* dout,
                     int size,
                     const std::vector<float> mean,
                     const std::vector<float> scale) {
  if (mean.size() != 3 || scale.size() != 3) {
    std::cerr << "[ERROR] mean or scale size must equal to 3\n";
    exit(1);
  }
  float32x4_t vmean0 = vdupq_n_f32(mean[0]);
  float32x4_t vmean1 = vdupq_n_f32(mean[1]);
  float32x4_t vmean2 = vdupq_n_f32(mean[2]);
  float32x4_t vscale0 = vdupq_n_f32(scale[0]);
  float32x4_t vscale1 = vdupq_n_f32(scale[1]);
  float32x4_t vscale2 = vdupq_n_f32(scale[2]);

  float* dout_c0 = dout;
  float* dout_c1 = dout + size;
  float* dout_c2 = dout + size * 2;

  int i = 0;
  for (; i < size - 3; i += 4) {
    float32x4x3_t vin3 = vld3q_f32(din);
    float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
    float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
    float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
    float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
    float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
    float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
    vst1q_f32(dout_c0, vs0);
    vst1q_f32(dout_c1, vs1);
    vst1q_f32(dout_c2, vs2);

    din += 12;
    dout_c0 += 4;
    dout_c1 += 4;
    dout_c2 += 4;
  }
  for (; i < size; i++) {
    *(dout_c0++) = (*(din++) - mean[0]) * scale[0];
    *(dout_c1++) = (*(din++) - mean[1]) * scale[1];
    *(dout_c2++) = (*(din++) - mean[2]) * scale[2];
  }
}

// resize image to a size multiple of 32 which is required by the network
cv::Mat resize_img_type0(const cv::Mat img, int max_size_len, float *ratio_h, float *ratio_w){
  int w = img.cols;
  int h = img.rows;

  float ratio = 1.f;
  int max_wh = w >=h ? w : h;
  if (max_wh > max_size_len){
    if (h > w){
      ratio = float(max_size_len) / float(h);
    } else {
      ratio = float(max_size_len) / float(w);
    }
  }

  int resize_h = int(float(h) * ratio);
  int resize_w = int(float(w) * ratio);
  if (resize_h % 32 == 0)
    resize_h = resize_h;
  else if (resize_h / 32 < 1)
    resize_h = 32;
  else
    resize_h = (resize_h / 32 - 1) * 32;

  if (resize_w % 32 == 0)
    resize_w = resize_w;
  else if (resize_w /32 < 1)
    resize_w = 32;
  else
    resize_w = (resize_w/32 - 1)*32;

  cv::Mat resize_img;
  cv::resize(img, resize_img, cv::Size(resize_w, resize_h));

  *ratio_h = float(resize_h) / float(h);
  *ratio_w = float(resize_w) / float(w);
  return resize_img;
}

using namespace std;

void RunRecModel(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat img, std::string rec_model_file){

  MobileConfig config;
  config.set_model_from_file(rec_model_file);

  std::shared_ptr<PaddlePredictor> predictor_crnn =
        CreatePaddlePredictor<MobileConfig>(config);

  std::vector<float> mean = {0.5f, 0.5f, 0.5f};
  std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};

  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat crop_img;
  cv::Mat resize_img;

  std::string dict_path = "./ppocr_keys_v1.txt";
  auto charactor_dict = read_dict(dict_path);

  std::cout << "The predicted text is :" << std::endl;
  int index = 0;
  for (int i=boxes.size()-1; i >= 0; i--) {
    crop_img = get_rotate_crop_image(srcimg, boxes[i]);

    float wh_ratio = float(crop_img.cols) / float(crop_img.rows);

    resize_img = crnn_resize_img(crop_img, wh_ratio);
    resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);

    const float *dimg = reinterpret_cast<const float *>(resize_img.data);

    std::unique_ptr <Tensor> input_tensor0(std::move(predictor_crnn->GetInput(0)));
    input_tensor0->Resize({1, 3, resize_img.rows, resize_img.cols});
    auto *data0 = input_tensor0->mutable_data<float>();

    neon_mean_scale(dimg, data0, resize_img.rows * resize_img.cols, mean, scale);

    //// Run CRNN predictor
    predictor_crnn->Run();

    // Get output and run postprocess
    std::unique_ptr<const Tensor> output_tensor0(
            std::move(predictor_crnn->GetOutput(0)));
    auto *rec_idx = output_tensor0->data<int>();

    auto rec_idx_lod = output_tensor0->lod();
    auto shape_out = output_tensor0->shape();

    std::vector<int> pred_idx;
    for (int n = int(rec_idx_lod[0][0]); n < int(rec_idx_lod[0][1] * 2); n += 2) {
      pred_idx.push_back(int(rec_idx[n]));
    }

    if (pred_idx.size() < 1e-3)
      continue;
    std::cout << std::endl;

    index += 1;
    std::cout << index << "\t";
    for (int n = 0; n < pred_idx.size(); n++) {
      std::cout << charactor_dict[pred_idx[n]];
    }

    ////get score
    std::unique_ptr<const Tensor> output_tensor1(std::move(predictor_crnn->GetOutput(1)));
    auto *predict_batch = output_tensor1->data<float>();
    auto predict_shape = output_tensor1->shape();

    auto predict_lod = output_tensor1->lod();

    int argmax_idx;
    int blank = predict_shape[1];
    float score = 0.f;
    int count = 0;
    float max_value = 0.0f;

    for (int n = predict_lod[0][0]; n < predict_lod[0][1] - 1; n++) {
      argmax_idx = int(argmax(&predict_batch[n * predict_shape[1]], &predict_batch[(n + 1) * predict_shape[1]]));
      max_value = float(
              *std::max_element(&predict_batch[n * predict_shape[1]], &predict_batch[(n + 1) * predict_shape[1]]));

      if (blank - 1 - argmax_idx > 1e-5) {
        score += max_value;
        count += 1;
      }

    }
    score /= count;
    std::cout << "\tscore: " << score << std::endl;
  }
}

std::vector<std::vector<std::vector<int>>> RunDetModel(std::string model_file, cv::Mat img) {
  // Set MobileConfig
  MobileConfig config;
  config.set_model_from_file(model_file);

  std::shared_ptr<PaddlePredictor> predictor =
      CreatePaddlePredictor<MobileConfig>(config);

  // Read img
  int max_side_len = 960;
  float ratio_h{};
  float ratio_w{};

  cv::Mat srcimg;
  img.copyTo(srcimg);

  img = resize_img_type0(img, max_side_len, &ratio_h, &ratio_w);
  cv::Mat img_fp;
  img.convertTo(img_fp, CV_32FC3, 1.0 / 255.f);

  // Prepare input data from image
  std::unique_ptr<Tensor> input_tensor0(std::move(predictor->GetInput(0)));
  input_tensor0->Resize({1, 3, img_fp.rows, img_fp.cols});
  auto* data0 = input_tensor0->mutable_data<float>();

  std::vector<float> mean = {0.485f, 0.456f, 0.406f};
  std::vector<float> scale = {1/0.229f, 1/0.224f, 1/0.225f};
  const float* dimg = reinterpret_cast<const float*>(img_fp.data);
  neon_mean_scale(dimg, data0, img_fp.rows * img_fp.cols, mean, scale);

  // Run predictor
  predictor->Run();

  // Get output and post process
  std::unique_ptr<const Tensor> output_tensor(std::move(predictor->GetOutput(0)));
  auto* outptr = output_tensor->data<float>();
  auto shape_out = output_tensor->shape();

  int64_t out_numl = 1;
  double sum = 0;
  for (auto i : shape_out) {
    out_numl *= i;
  }

  // Save output
  float pred[shape_out[2]][shape_out[3]];
  unsigned char cbuf[shape_out[2]][shape_out[3]];

  for (int i=0; i< int(shape_out[2]*shape_out[3]); i++){
    pred[int(i/int(shape_out[3]))][int(i%shape_out[3])] = float(outptr[i]);
    cbuf[int(i/int(shape_out[3]))][int(i%shape_out[3])] = (unsigned char) ((outptr[i])*255);
  }

  cv::Mat cbuf_map(shape_out[2], shape_out[3], CV_8UC1, (unsigned char*)cbuf);
  cv::Mat pred_map(shape_out[2], shape_out[3], CV_32F, (float *)pred);

  const double threshold = 0.3*255;
  const double maxvalue = 255;
  cv::Mat bit_map;
  cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);

  auto boxes = boxes_from_bitmap(pred_map, bit_map);

  std::vector<std::vector<std::vector<int>>> filter_boxes = filter_tag_det_res(boxes, ratio_h, ratio_w, srcimg);

  //// visualization
  cv::Point rook_points[filter_boxes.size()][4];
  for (int n=0; n<filter_boxes.size(); n++){
    for (int m=0; m< filter_boxes[0].size(); m++){
      rook_points[n][m] = cv::Point(int(filter_boxes[n][m][0]), int(filter_boxes[n][m][1]));
    }
  }

  cv::Mat img_vis;
  srcimg.copyTo(img_vis);
  for (int n=0; n<boxes.size(); n++){
    const cv::Point* ppt[1] = { rook_points[n] };
    int npt[] = { 4 };
    cv::polylines(img_vis, ppt, npt,1,1,CV_RGB(0,255,0),2,8,0);
  }

  cv::imwrite("./imgs_vis/vis.jpg", img_vis);
  std::cout << "The detection visualized image saved in ./imgs_vis/" <<std::endl;

  return filter_boxes;
}


int main(int argc, char** argv) {
  if (argc < 4) {
    std::cerr << "[ERROR] usage: " << argv[0] << " det_model_file rec_model_file image_path\n";
    exit(1);
  }
  std::string det_model_file = argv[1];
  std::string rec_model_file = argv[2];
  std::string img_path = argv[3];

  auto start = std::chrono::system_clock::now();

  cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR);
  auto boxes = RunDetModel(det_model_file, srcimg);

  RunRecModel(boxes, srcimg, rec_model_file);

  auto end   = std::chrono::system_clock::now();
  auto duration = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
  std::cout <<  "花费了"
            << double(duration.count()) * std::chrono::microseconds::period::num /std::chrono::microseconds::period::den
            << "秒" << std::endl;

  return 0;
}