e2e_r50_vd_pg.yml 3.2 KB
Newer Older
Jethong's avatar
Jethong committed
1
Global:
2
  use_gpu: True
Jethong's avatar
Jethong committed
3
4
  epoch_num: 600
  log_smooth_window: 20
5
  print_batch_step: 10
Jethong's avatar
Jethong committed
6
  save_model_dir: ./output/pg_r50_vd_tt/
7
8
  save_epoch_step: 10
  # evaluation is run every 0 iterationss after the 1000th iteration
Jethong's avatar
Jethong committed
9
  eval_batch_step: [ 0, 1000 ]
10
11
12
13
14
  # 1. If pretrained_model is saved in static mode, such as classification pretrained model
  #    from static branch, load_static_weights must be set as True.
  # 2. If you want to finetune the pretrained models we provide in the docs,
  #    you should set load_static_weights as False.
  load_static_weights: True
Jethong's avatar
Jethong committed
15
16
17
18
19
20
21
22
23
24
  cal_metric_during_train: False
  pretrained_model:
  checkpoints:
  save_inference_dir:
  use_visualdl: False
  infer_img:
  save_res_path: ./output/pg_r50_vd_tt/predicts_pg.txt

Architecture:
  model_type: e2e
25
  algorithm: PGNet
Jethong's avatar
Jethong committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
  Transform:
  Backbone:
    name: ResNet
    layers: 50
  Neck:
    name: PGFPN
    model_name: large
  Head:
    name: PGHead
    model_name: large

Loss:
  name: PGLoss

Optimizer:
41
42
43
  name: Adam
  beta1: 0.9
  beta2: 0.999
Jethong's avatar
Jethong committed
44
45
46
47
  lr:
    learning_rate: 0.001
  regularizer:
    name: 'L2'
48
49
    factor: 0

Jethong's avatar
Jethong committed
50
51
52
53
54
55
56
57
58

PostProcess:
  name: PGPostProcess
  score_thresh: 0.8
  cover_thresh: 0.1
  nms_thresh: 0.2

Metric:
  name: E2EMetric
59
  Lexicon_Table: [ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' ]
Jethong's avatar
Jethong committed
60
  main_indicator: f_score_e2e
Jethong's avatar
Jethong committed
61
62
63
64

Train:
  dataset:
    name: PGDateSet
65
66
67
    label_file_list: [./train_data/total_text/train/]
    ratio_list: [1.0]
    data_format: icdar
Jethong's avatar
Jethong committed
68
69
70
71
72
73
74
75
76
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - PGProcessTrain:
          batch_size: 14
          min_crop_size: 24
          min_text_size: 4
          max_text_size: 512
77
          Lexicon_Table: [ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' ]
Jethong's avatar
Jethong committed
78
79
80
81
82
      - KeepKeys:
          keep_keys: [ 'images', 'tcl_maps', 'tcl_label_maps', 'border_maps','direction_maps', 'training_masks', 'label_list', 'pos_list', 'pos_mask' ] # dataloader will return list in this order
  loader:
    shuffle: True
    drop_last: True
83
84
    batch_size_per_card: 14
    num_workers: 16
Jethong's avatar
Jethong committed
85
86
87

Eval:
  dataset:
88
    name: PGDataSet
Jethong's avatar
Jethong committed
89
    data_dir: ./train_data/
90
    label_file_list: [./train_data/total_text/test/]
Jethong's avatar
Jethong committed
91
92
93
94
95
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - E2ELabelEncode:
96
97
          Lexicon_Table: [ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' ]
          max_len: 50
Jethong's avatar
Jethong committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
      - E2EResizeForTest:
          valid_set: totaltext
          max_side_len: 768
      - NormalizeImage:
          scale: 1./255.
          mean: [ 0.485, 0.456, 0.406 ]
          std: [ 0.229, 0.224, 0.225 ]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: [ 'image', 'shape', 'polys', 'strs', 'tags' ]
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 1 # must be 1
    num_workers: 2