module.py 4.84 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

WenmuZhou's avatar
WenmuZhou committed
15
16
17
18
19
20
21
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
sys.path.insert(0, ".")
littletomatodonkey's avatar
littletomatodonkey committed
22
import copy
WenmuZhou's avatar
WenmuZhou committed
23
import paddlehub
WenmuZhou's avatar
WenmuZhou committed
24
25
26
27
28
29
30
from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, runnable, serving
import cv2
import paddlehub as hub

from tools.infer.utility import base64_to_cv2
from tools.infer.predict_cls import TextClassifier
littletomatodonkey's avatar
littletomatodonkey committed
31
from tools.infer.utility import parse_args
littletomatodonkey's avatar
littletomatodonkey committed
32
from deploy.hubserving.ocr_cls.params import read_params
WenmuZhou's avatar
WenmuZhou committed
33
34
35
36
37


@moduleinfo(
    name="ocr_cls",
    version="1.0.0",
WenmuZhou's avatar
WenmuZhou committed
38
    summary="ocr angle cls service",
WenmuZhou's avatar
WenmuZhou committed
39
40
    author="paddle-dev",
    author_email="paddle-dev@baidu.com",
WenmuZhou's avatar
WenmuZhou committed
41
    type="cv/text_angle_cls")
WenmuZhou's avatar
WenmuZhou committed
42
43
44
45
46
class OCRCls(hub.Module):
    def _initialize(self, use_gpu=False, enable_mkldnn=False):
        """
        initialize with the necessary elements
        """
littletomatodonkey's avatar
littletomatodonkey committed
47
        cfg = self.merge_configs()
WenmuZhou's avatar
WenmuZhou committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

        cfg.use_gpu = use_gpu
        if use_gpu:
            try:
                _places = os.environ["CUDA_VISIBLE_DEVICES"]
                int(_places[0])
                print("use gpu: ", use_gpu)
                print("CUDA_VISIBLE_DEVICES: ", _places)
                cfg.gpu_mem = 8000
            except:
                raise RuntimeError(
                    "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
                )
        cfg.ir_optim = True
        cfg.enable_mkldnn = enable_mkldnn

        self.text_classifier = TextClassifier(cfg)

littletomatodonkey's avatar
littletomatodonkey committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    def merge_configs(self, ):
        # deafult cfg
        backup_argv = copy.deepcopy(sys.argv)
        sys.argv = sys.argv[:1]
        cfg = parse_args()

        update_cfg_map = vars(read_params())

        for key in update_cfg_map:
            cfg.__setattr__(key, update_cfg_map[key])

        sys.argv = copy.deepcopy(backup_argv)
        return cfg

WenmuZhou's avatar
WenmuZhou committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    def read_images(self, paths=[]):
        images = []
        for img_path in paths:
            assert os.path.isfile(
                img_path), "The {} isn't a valid file.".format(img_path)
            img = cv2.imread(img_path)
            if img is None:
                logger.info("error in loading image:{}".format(img_path))
                continue
            images.append(img)
        return images

    def predict(self, images=[], paths=[]):
        """
        Get the text angle in the predicted images.
        Args:
            images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
            paths (list[str]): The paths of images. If paths not images
        Returns:
            res (list): The result of text detection box and save path of images.
        """

        if images != [] and isinstance(images, list) and paths == []:
            predicted_data = images
        elif images == [] and isinstance(paths, list) and paths != []:
            predicted_data = self.read_images(paths)
        else:
            raise TypeError("The input data is inconsistent with expectations.")

        assert predicted_data != [], "There is not any image to be predicted. Please check the input data."

        img_list = []
        for img in predicted_data:
            if img is None:
                continue
            img_list.append(img)

        rec_res_final = []
        try:
            img_list, cls_res, predict_time = self.text_classifier(img_list)
            for dno in range(len(cls_res)):
                angle, score = cls_res[dno]
                rec_res_final.append({
                    'angle': angle,
                    'confidence': float(score),
                })
        except Exception as e:
            print(e)
            return [[]]

        return [rec_res_final]

    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        images_decode = [base64_to_cv2(image) for image in images]
        results = self.predict(images_decode, **kwargs)
        return results


if __name__ == '__main__':
    ocr = OCRCls()
WenmuZhou's avatar
WenmuZhou committed
144
    ocr._initialize()
WenmuZhou's avatar
WenmuZhou committed
145
146
147
148
149
150
151
    image_path = [
        './doc/imgs_words/ch/word_1.jpg',
        './doc/imgs_words/ch/word_2.jpg',
        './doc/imgs_words/ch/word_3.jpg',
    ]
    res = ocr.predict(paths=image_path)
    print(res)