label_ops.py 37 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

20
import copy
WenmuZhou's avatar
WenmuZhou committed
21
import numpy as np
tink2123's avatar
tink2123 committed
22
import string
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
23
from shapely.geometry import LineString, Point, Polygon
LDOUBLEV's avatar
LDOUBLEV committed
24
import json
andyjpaddle's avatar
andyjpaddle committed
25
import copy
LDOUBLEV's avatar
LDOUBLEV committed
26
from scipy.spatial import distance as dist
tink2123's avatar
tink2123 committed
27
28
from ppocr.utils.logging import get_logger

WenmuZhou's avatar
WenmuZhou committed
29
30
31
32
33
34
35
36
37
38
39
40

class ClsLabelEncode(object):
    def __init__(self, label_list, **kwargs):
        self.label_list = label_list

    def __call__(self, data):
        label = data['label']
        if label not in self.label_list:
            return None
        label = self.label_list.index(label)
        data['label'] = label
        return data
WenmuZhou's avatar
WenmuZhou committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


class DetLabelEncode(object):
    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
LDOUBLEV's avatar
LDOUBLEV committed
61
62
        if len(boxes) == 0:
            return None
MissPenguin's avatar
MissPenguin committed
63
        boxes = self.expand_points_num(boxes)
WenmuZhou's avatar
WenmuZhou committed
64
65
66
67
68
69
70
71
72
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
        data['ignore_tags'] = txt_tags
        return data

    def order_points_clockwise(self, pts):
LDOUBLEV's avatar
LDOUBLEV committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        """
        refer to :https://github.com/PyImageSearch/imutils/blob/9f740a53bcc2ed7eba2558afed8b4c17fd8a1d4c/imutils/perspective.py#L9
        """
        # sort the points based on their x-coordinates
        xSorted = pts[np.argsort(pts[:, 0]), :]

        leftMost = xSorted[:2, :]
        rightMost = xSorted[2:, :]

        leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
        (tl, bl) = leftMost

        D = dist.cdist(tl[np.newaxis], rightMost, "euclidean")[0]
        (br, tr) = rightMost[np.argsort(D)[::-1], :]

        return np.array([tl, tr, br, bl], dtype="float32")
WenmuZhou's avatar
WenmuZhou committed
89

MissPenguin's avatar
MissPenguin committed
90
91
92
93
94
95
96
97
98
99
100
    def expand_points_num(self, boxes):
        max_points_num = 0
        for box in boxes:
            if len(box) > max_points_num:
                max_points_num = len(box)
        ex_boxes = []
        for box in boxes:
            ex_box = box + [box[-1]] * (max_points_num - len(box))
            ex_boxes.append(ex_box)
        return ex_boxes

WenmuZhou's avatar
WenmuZhou committed
101
102
103
104
105
106
107
108
109
110

class BaseRecLabelEncode(object):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False):

        self.max_text_len = max_text_length
tink2123's avatar
tink2123 committed
111
112
        self.beg_str = "sos"
        self.end_str = "eos"
tink2123's avatar
tink2123 committed
113
        self.lower = False
tink2123's avatar
tink2123 committed
114
115
116
117
118
119

        if character_dict_path is None:
            logger = get_logger()
            logger.warning(
                "The character_dict_path is None, model can only recognize number and lower letters"
            )
WenmuZhou's avatar
WenmuZhou committed
120
121
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
tink2123's avatar
tink2123 committed
122
123
            self.lower = True
        else:
124
            self.character_str = []
WenmuZhou's avatar
WenmuZhou committed
125
126
127
128
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
129
                    self.character_str.append(line)
WenmuZhou's avatar
WenmuZhou committed
130
            if use_space_char:
131
                self.character_str.append(" ")
WenmuZhou's avatar
WenmuZhou committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
            dict_character = list(self.character_str)
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

    def encode(self, text):
        """convert text-label into text-index.
        input:
            text: text labels of each image. [batch_size]

        output:
            text: concatenated text index for CTCLoss.
                    [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
            length: length of each text. [batch_size]
        """
WenmuZhou's avatar
WenmuZhou committed
152
        if len(text) == 0 or len(text) > self.max_text_len:
WenmuZhou's avatar
WenmuZhou committed
153
            return None
tink2123's avatar
tink2123 committed
154
        if self.lower:
WenmuZhou's avatar
WenmuZhou committed
155
156
157
158
159
160
161
162
163
164
165
166
167
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                # logger = get_logger()
                # logger.warning('{} is not in dict'.format(char))
                continue
            text_list.append(self.dict[char])
        if len(text_list) == 0:
            return None
        return text_list


Topdu's avatar
Topdu committed
168
169
170
171
172
173
174
175
176
class NRTRLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):

tink2123's avatar
tink2123 committed
177
178
        super(NRTRLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
tink2123's avatar
tink2123 committed
179

Topdu's avatar
Topdu committed
180
181
182
183
184
    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
Topdu's avatar
Topdu committed
185
186
        if len(text) >= self.max_text_len - 1:
            return None
Topdu's avatar
Topdu committed
187
188
189
190
191
192
        data['length'] = np.array(len(text))
        text.insert(0, 2)
        text.append(3)
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
        return data
tink2123's avatar
tink2123 committed
193

Topdu's avatar
Topdu committed
194
    def add_special_char(self, dict_character):
tink2123's avatar
tink2123 committed
195
        dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
Topdu's avatar
Topdu committed
196
197
        return dict_character

tink2123's avatar
tink2123 committed
198

WenmuZhou's avatar
WenmuZhou committed
199
200
201
202
203
204
205
206
class CTCLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
tink2123's avatar
tink2123 committed
207
208
        super(CTCLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
WenmuZhou's avatar
WenmuZhou committed
209
210
211
212
213
214
215
216
217

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        data['length'] = np.array(len(text))
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
218
219
220
221
222

        label = [0] * len(self.character)
        for x in text:
            label[x] += 1
        data['label_ace'] = np.array(label)
WenmuZhou's avatar
WenmuZhou committed
223
224
225
226
227
228
229
        return data

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


Jethong's avatar
Jethong committed
230
class E2ELabelEncodeTest(BaseRecLabelEncode):
Jethong's avatar
Jethong committed
231
232
233
234
235
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
tink2123's avatar
tink2123 committed
236
237
        super(E2ELabelEncodeTest, self).__init__(
            max_text_length, character_dict_path, use_space_char)
Jethong's avatar
Jethong committed
238
239

    def __call__(self, data):
Jethong's avatar
Jethong committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        import json
        padnum = len(self.dict)
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)
        data['polys'] = boxes
Jethong's avatar
Jethong committed
258
        data['ignore_tags'] = txt_tags
Jethong's avatar
Jethong committed
259
        temp_texts = []
Jethong's avatar
Jethong committed
260
        for text in txts:
Jethong's avatar
Jethong committed
261
            text = text.lower()
Jethong's avatar
Jethong committed
262
263
264
            text = self.encode(text)
            if text is None:
                return None
Jethong's avatar
Jethong committed
265
266
            text = text + [padnum] * (self.max_text_len - len(text)
                                      )  # use 36 to pad
Jethong's avatar
Jethong committed
267
268
269
270
271
            temp_texts.append(text)
        data['texts'] = np.array(temp_texts)
        return data


Jethong's avatar
Jethong committed
272
class E2ELabelEncodeTrain(object):
Jethong's avatar
Jethong committed
273
274
    def __init__(self, **kwargs):
        pass
Jethong's avatar
Jethong committed
275
276

    def __call__(self, data):
Jethong's avatar
Jethong committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        import json
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
Jethong's avatar
Jethong committed
296
        data['ignore_tags'] = txt_tags
Jethong's avatar
Jethong committed
297
298
299
        return data


LDOUBLEV's avatar
add kie  
LDOUBLEV committed
300
301
302
303
class KieLabelEncode(object):
    def __init__(self, character_dict_path, norm=10, directed=False, **kwargs):
        super(KieLabelEncode, self).__init__()
        self.dict = dict({'': 0})
LDOUBLEV's avatar
fix win  
LDOUBLEV committed
304
        with open(character_dict_path, 'r', encoding='utf-8') as fr:
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
            idx = 1
            for line in fr:
                char = line.strip()
                self.dict[char] = idx
                idx += 1
        self.norm = norm
        self.directed = directed

    def compute_relation(self, boxes):
        """Compute relation between every two boxes."""
        x1s, y1s = boxes[:, 0:1], boxes[:, 1:2]
        x2s, y2s = boxes[:, 4:5], boxes[:, 5:6]
        ws, hs = x2s - x1s + 1, np.maximum(y2s - y1s + 1, 1)
        dxs = (x1s[:, 0][None] - x1s) / self.norm
        dys = (y1s[:, 0][None] - y1s) / self.norm
        xhhs, xwhs = hs[:, 0][None] / hs, ws[:, 0][None] / hs
        whs = ws / hs + np.zeros_like(xhhs)
        relations = np.stack([dxs, dys, whs, xhhs, xwhs], -1)
        bboxes = np.concatenate([x1s, y1s, x2s, y2s], -1).astype(np.float32)
        return relations, bboxes

    def pad_text_indices(self, text_inds):
        """Pad text index to same length."""
LDOUBLEV's avatar
debug  
LDOUBLEV committed
328
        max_len = 300
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
        recoder_len = max([len(text_ind) for text_ind in text_inds])
        padded_text_inds = -np.ones((len(text_inds), max_len), np.int32)
        for idx, text_ind in enumerate(text_inds):
            padded_text_inds[idx, :len(text_ind)] = np.array(text_ind)
        return padded_text_inds, recoder_len

    def list_to_numpy(self, ann_infos):
        """Convert bboxes, relations, texts and labels to ndarray."""
        boxes, text_inds = ann_infos['points'], ann_infos['text_inds']
        boxes = np.array(boxes, np.int32)
        relations, bboxes = self.compute_relation(boxes)

        labels = ann_infos.get('labels', None)
        if labels is not None:
            labels = np.array(labels, np.int32)
            edges = ann_infos.get('edges', None)
            if edges is not None:
                labels = labels[:, None]
                edges = np.array(edges)
                edges = (edges[:, None] == edges[None, :]).astype(np.int32)
                if self.directed:
                    edges = (edges & labels == 1).astype(np.int32)
                np.fill_diagonal(edges, -1)
                labels = np.concatenate([labels, edges], -1)
        padded_text_inds, recoder_len = self.pad_text_indices(text_inds)
LDOUBLEV's avatar
debug  
LDOUBLEV committed
354
        max_num = 300
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
355
356
        temp_bboxes = np.zeros([max_num, 4])
        h, _ = bboxes.shape
yfzhou's avatar
yfzhou committed
357
        temp_bboxes[:h, :] = bboxes
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
358
359
360
361

        temp_relations = np.zeros([max_num, max_num, 5])
        temp_relations[:h, :h, :] = relations

LDOUBLEV's avatar
debug  
LDOUBLEV committed
362
        temp_padded_text_inds = np.zeros([max_num, max_num])
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
363
364
        temp_padded_text_inds[:h, :] = padded_text_inds

LDOUBLEV's avatar
debug  
LDOUBLEV committed
365
        temp_labels = np.zeros([max_num, max_num])
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
        temp_labels[:h, :h + 1] = labels

        tag = np.array([h, recoder_len])
        return dict(
            image=ann_infos['image'],
            points=temp_bboxes,
            relations=temp_relations,
            texts=temp_padded_text_inds,
            labels=temp_labels,
            tag=tag)

    def convert_canonical(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        points = [Point(points_x[i], points_y[i]) for i in range(4)]

        polygon = Polygon([(p.x, p.y) for p in points])
        min_x, min_y, _, _ = polygon.bounds
        points_to_lefttop = [
            LineString([points[i], Point(min_x, min_y)]) for i in range(4)
        ]
        distances = np.array([line.length for line in points_to_lefttop])
        sort_dist_idx = np.argsort(distances)
        lefttop_idx = sort_dist_idx[0]

        if lefttop_idx == 0:
            point_orders = [0, 1, 2, 3]
        elif lefttop_idx == 1:
            point_orders = [1, 2, 3, 0]
        elif lefttop_idx == 2:
            point_orders = [2, 3, 0, 1]
        else:
            point_orders = [3, 0, 1, 2]

        sorted_points_x = [points_x[i] for i in point_orders]
        sorted_points_y = [points_y[j] for j in point_orders]

        return sorted_points_x, sorted_points_y

    def sort_vertex(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        x = np.array(points_x)
        y = np.array(points_y)
        center_x = np.sum(x) * 0.25
        center_y = np.sum(y) * 0.25

        x_arr = np.array(x - center_x)
        y_arr = np.array(y - center_y)

        angle = np.arctan2(y_arr, x_arr) * 180.0 / np.pi
        sort_idx = np.argsort(angle)

        sorted_points_x, sorted_points_y = [], []
        for i in range(4):
            sorted_points_x.append(points_x[sort_idx[i]])
            sorted_points_y.append(points_y[sort_idx[i]])

        return self.convert_canonical(sorted_points_x, sorted_points_y)

    def __call__(self, data):
        import json
        label = data['label']
        annotations = json.loads(label)
        boxes, texts, text_inds, labels, edges = [], [], [], [], []
        for ann in annotations:
            box = ann['points']
            x_list = [box[i][0] for i in range(4)]
            y_list = [box[i][1] for i in range(4)]
            sorted_x_list, sorted_y_list = self.sort_vertex(x_list, y_list)
            sorted_box = []
            for x, y in zip(sorted_x_list, sorted_y_list):
                sorted_box.append(x)
                sorted_box.append(y)
            boxes.append(sorted_box)
            text = ann['transcription']
            texts.append(ann['transcription'])
            text_ind = [self.dict[c] for c in text if c in self.dict]
            text_inds.append(text_ind)
Double_V's avatar
Double_V committed
449
450
451
452
453
            if 'label' in ann.keys():
                labels.append(ann['label'])
            elif 'key_cls' in ann.keys():
                labels.append(ann['key_cls'])
            else:
LDOUBLEV's avatar
LDOUBLEV committed
454
455
456
                raise ValueError(
                    "Cannot found 'key_cls' in ann.keys(), please check your training annotation."
                )
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
457
458
459
460
461
462
463
464
465
466
467
468
            edges.append(ann.get('edge', 0))
        ann_infos = dict(
            image=data['image'],
            points=boxes,
            texts=texts,
            text_inds=text_inds,
            edges=edges,
            labels=labels)

        return self.list_to_numpy(ann_infos)


WenmuZhou's avatar
WenmuZhou committed
469
470
471
472
473
474
475
476
class AttnLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
tink2123's avatar
tink2123 committed
477
478
        super(AttnLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
WenmuZhou's avatar
WenmuZhou committed
479
480

    def add_special_char(self, dict_character):
LDOUBLEV's avatar
LDOUBLEV committed
481
482
483
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = [self.beg_str] + dict_character + [self.end_str]
WenmuZhou's avatar
WenmuZhou committed
484
485
        return dict_character

LDOUBLEV's avatar
LDOUBLEV committed
486
487
    def __call__(self, data):
        text = data['label']
WenmuZhou's avatar
WenmuZhou committed
488
        text = self.encode(text)
LDOUBLEV's avatar
LDOUBLEV committed
489
490
        if text is None:
            return None
LDOUBLEV's avatar
LDOUBLEV committed
491
        if len(text) >= self.max_text_len:
LDOUBLEV's avatar
LDOUBLEV committed
492
493
494
            return None
        data['length'] = np.array(len(text))
        text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len
tink2123's avatar
tink2123 committed
495
                                                               - len(text) - 2)
LDOUBLEV's avatar
LDOUBLEV committed
496
497
498
499
500
501
502
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]
WenmuZhou's avatar
WenmuZhou committed
503
504
505
506
507
508
509
510
511
512

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
tink2123's avatar
tink2123 committed
513
514


tink2123's avatar
tink2123 committed
515
516
517
518
519
520
521
522
class SEEDLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
tink2123's avatar
tink2123 committed
523
524
        super(SEEDLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
tink2123's avatar
tink2123 committed
525
526

    def add_special_char(self, dict_character):
tink2123's avatar
tink2123 committed
527
        self.padding = "padding"
tink2123's avatar
tink2123 committed
528
        self.end_str = "eos"
tink2123's avatar
tink2123 committed
529
530
531
532
        self.unknown = "unknown"
        dict_character = dict_character + [
            self.end_str, self.padding, self.unknown
        ]
tink2123's avatar
tink2123 committed
533
534
535
536
537
538
539
540
541
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
tink2123's avatar
rm anno  
tink2123 committed
542
        data['length'] = np.array(len(text)) + 1  # conclude eos
tink2123's avatar
tink2123 committed
543
544
        text = text + [len(self.character) - 3] + [len(self.character) - 2] * (
            self.max_text_len - len(text) - 1)
tink2123's avatar
tink2123 committed
545
546
547
548
        data['label'] = np.array(text)
        return data


tink2123's avatar
tink2123 committed
549
550
551
552
553
554
555
556
class SRNLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length=25,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
tink2123's avatar
tink2123 committed
557
558
        super(SRNLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
tink2123's avatar
tink2123 committed
559
560
561
562
563
564
565
566

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
tink2123's avatar
tink2123 committed
567
        char_num = len(self.character)
tink2123's avatar
tink2123 committed
568
569
570
571
572
        if text is None:
            return None
        if len(text) > self.max_text_len:
            return None
        data['length'] = np.array(len(text))
tink2123's avatar
tink2123 committed
573
        text = text + [char_num - 1] * (self.max_text_len - len(text))
tink2123's avatar
tink2123 committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
MissPenguin's avatar
MissPenguin committed
591

LDOUBLEV's avatar
LDOUBLEV committed
592

MissPenguin's avatar
MissPenguin committed
593
594
class TableLabelEncode(object):
    """ Convert between text-label and text-index """
LDOUBLEV's avatar
LDOUBLEV committed
595
596
597
598
599
600
601
602

    def __init__(self,
                 max_text_length,
                 max_elem_length,
                 max_cell_num,
                 character_dict_path,
                 span_weight=1.0,
                 **kwargs):
MissPenguin's avatar
MissPenguin committed
603
604
605
        self.max_text_length = max_text_length
        self.max_elem_length = max_elem_length
        self.max_cell_num = max_cell_num
LDOUBLEV's avatar
LDOUBLEV committed
606
607
        list_character, list_elem = self.load_char_elem_dict(
            character_dict_path)
MissPenguin's avatar
MissPenguin committed
608
609
610
611
612
613
614
615
616
        list_character = self.add_special_char(list_character)
        list_elem = self.add_special_char(list_elem)
        self.dict_character = {}
        for i, char in enumerate(list_character):
            self.dict_character[char] = i
        self.dict_elem = {}
        for i, elem in enumerate(list_elem):
            self.dict_elem[elem] = i
        self.span_weight = span_weight
LDOUBLEV's avatar
LDOUBLEV committed
617

MissPenguin's avatar
MissPenguin committed
618
619
620
621
622
    def load_char_elem_dict(self, character_dict_path):
        list_character = []
        list_elem = []
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
WenmuZhou's avatar
WenmuZhou committed
623
            substr = lines[0].decode('utf-8').strip("\r\n").split("\t")
MissPenguin's avatar
MissPenguin committed
624
625
            character_num = int(substr[0])
            elem_num = int(substr[1])
LDOUBLEV's avatar
LDOUBLEV committed
626
            for cno in range(1, 1 + character_num):
WenmuZhou's avatar
WenmuZhou committed
627
                character = lines[cno].decode('utf-8').strip("\r\n")
MissPenguin's avatar
MissPenguin committed
628
                list_character.append(character)
LDOUBLEV's avatar
LDOUBLEV committed
629
            for eno in range(1 + character_num, 1 + character_num + elem_num):
WenmuZhou's avatar
WenmuZhou committed
630
                elem = lines[eno].decode('utf-8').strip("\r\n")
MissPenguin's avatar
MissPenguin committed
631
632
                list_elem.append(elem)
        return list_character, list_elem
LDOUBLEV's avatar
LDOUBLEV committed
633

MissPenguin's avatar
MissPenguin committed
634
635
636
637
638
    def add_special_char(self, list_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        list_character = [self.beg_str] + list_character + [self.end_str]
        return list_character
LDOUBLEV's avatar
LDOUBLEV committed
639

MissPenguin's avatar
MissPenguin committed
640
641
642
643
644
645
    def get_span_idx_list(self):
        span_idx_list = []
        for elem in self.dict_elem:
            if 'span' in elem:
                span_idx_list.append(self.dict_elem[elem])
        return span_idx_list
LDOUBLEV's avatar
LDOUBLEV committed
646

MissPenguin's avatar
MissPenguin committed
647
648
649
650
651
652
653
654
    def __call__(self, data):
        cells = data['cells']
        structure = data['structure']['tokens']
        structure = self.encode(structure, 'elem')
        if structure is None:
            return None
        elem_num = len(structure)
        structure = [0] + structure + [len(self.dict_elem) - 1]
LDOUBLEV's avatar
LDOUBLEV committed
655
656
        structure = structure + [0] * (self.max_elem_length + 2 - len(structure)
                                       )
MissPenguin's avatar
MissPenguin committed
657
658
659
660
661
        structure = np.array(structure)
        data['structure'] = structure
        elem_char_idx1 = self.dict_elem['<td>']
        elem_char_idx2 = self.dict_elem['<td']
        span_idx_list = self.get_span_idx_list()
LDOUBLEV's avatar
LDOUBLEV committed
662
663
        td_idx_list = np.logical_or(structure == elem_char_idx1,
                                    structure == elem_char_idx2)
MissPenguin's avatar
MissPenguin committed
664
        td_idx_list = np.where(td_idx_list)[0]
LDOUBLEV's avatar
LDOUBLEV committed
665
666
667

        structure_mask = np.ones(
            (self.max_elem_length + 2, 1), dtype=np.float32)
MissPenguin's avatar
MissPenguin committed
668
        bbox_list = np.zeros((self.max_elem_length + 2, 4), dtype=np.float32)
LDOUBLEV's avatar
LDOUBLEV committed
669
670
        bbox_list_mask = np.zeros(
            (self.max_elem_length + 2, 1), dtype=np.float32)
MissPenguin's avatar
MissPenguin committed
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
        img_height, img_width, img_ch = data['image'].shape
        if len(span_idx_list) > 0:
            span_weight = len(td_idx_list) * 1.0 / len(span_idx_list)
            span_weight = min(max(span_weight, 1.0), self.span_weight)
        for cno in range(len(cells)):
            if 'bbox' in cells[cno]:
                bbox = cells[cno]['bbox'].copy()
                bbox[0] = bbox[0] * 1.0 / img_width
                bbox[1] = bbox[1] * 1.0 / img_height
                bbox[2] = bbox[2] * 1.0 / img_width
                bbox[3] = bbox[3] * 1.0 / img_height
                td_idx = td_idx_list[cno]
                bbox_list[td_idx] = bbox
                bbox_list_mask[td_idx] = 1.0
                cand_span_idx = td_idx + 1
                if cand_span_idx < (self.max_elem_length + 2):
                    if structure[cand_span_idx] in span_idx_list:
                        structure_mask[cand_span_idx] = span_weight

        data['bbox_list'] = bbox_list
        data['bbox_list_mask'] = bbox_list_mask
        data['structure_mask'] = structure_mask
        char_beg_idx = self.get_beg_end_flag_idx('beg', 'char')
        char_end_idx = self.get_beg_end_flag_idx('end', 'char')
        elem_beg_idx = self.get_beg_end_flag_idx('beg', 'elem')
        elem_end_idx = self.get_beg_end_flag_idx('end', 'elem')
LDOUBLEV's avatar
LDOUBLEV committed
697
698
699
700
701
        data['sp_tokens'] = np.array([
            char_beg_idx, char_end_idx, elem_beg_idx, elem_end_idx,
            elem_char_idx1, elem_char_idx2, self.max_text_length,
            self.max_elem_length, self.max_cell_num, elem_num
        ])
MissPenguin's avatar
MissPenguin committed
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
        return data

    def encode(self, text, char_or_elem):
        """convert text-label into text-index.
        """
        if char_or_elem == "char":
            max_len = self.max_text_length
            current_dict = self.dict_character
        else:
            max_len = self.max_elem_length
            current_dict = self.dict_elem
        if len(text) > max_len:
            return None
        if len(text) == 0:
            if char_or_elem == "char":
                return [self.dict_character['space']]
            else:
                return None
        text_list = []
        for char in text:
            if char not in current_dict:
                return None
            text_list.append(current_dict[char])
        if len(text_list) == 0:
            if char_or_elem == "char":
                return [self.dict_character['space']]
            else:
                return None
        return text_list

    def get_ignored_tokens(self, char_or_elem):
        beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
        end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
        if char_or_elem == "char":
            if beg_or_end == "beg":
                idx = np.array(self.dict_character[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict_character[self.end_str])
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
                              % beg_or_end
        elif char_or_elem == "elem":
            if beg_or_end == "beg":
                idx = np.array(self.dict_elem[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict_elem[self.end_str])
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
LDOUBLEV's avatar
LDOUBLEV committed
753
                              % beg_or_end
MissPenguin's avatar
MissPenguin committed
754
755
        else:
            assert False, "Unsupport type %s in char_or_elem" \
756
                % char_or_elem
MissPenguin's avatar
MissPenguin committed
757
        return idx
andyjpaddle's avatar
andyjpaddle committed
758
759
760
761
762
763
764
765
766
767


class SARLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
tink2123's avatar
tink2123 committed
768
769
        super(SARLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
andyjpaddle's avatar
andyjpaddle committed
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1

        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len - 1:
            return None
        data['length'] = np.array(len(text))
        target = [self.start_idx] + text + [self.end_idx]
        padded_text = [self.padding_idx for _ in range(self.max_text_len)]
tink2123's avatar
tink2123 committed
795

andyjpaddle's avatar
andyjpaddle committed
796
797
798
799
800
801
        padded_text[:len(target)] = target
        data['label'] = np.array(padded_text)
        return data

    def get_ignored_tokens(self):
        return [self.padding_idx]
802
803


804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
class PRENLabelEncode(BaseRecLabelEncode):
    def __init__(self,
                 max_text_length,
                 character_dict_path,
                 use_space_char=False,
                 **kwargs):
        super(PRENLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

    def add_special_char(self, dict_character):
        padding_str = '<PAD>'  # 0 
        end_str = '<EOS>'  # 1
        unknown_str = '<UNK>'  # 2

        dict_character = [padding_str, end_str, unknown_str] + dict_character
        self.padding_idx = 0
        self.end_idx = 1
        self.unknown_idx = 2

        return dict_character

    def encode(self, text):
        if len(text) == 0 or len(text) >= self.max_text_len:
            return None
        if self.lower:
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                text_list.append(self.unknown_idx)
            else:
                text_list.append(self.dict[char])
        text_list.append(self.end_idx)
        if len(text_list) < self.max_text_len:
            text_list += [self.padding_idx] * (
                self.max_text_len - len(text_list))
        return text_list

    def __call__(self, data):
        text = data['label']
        encoded_text = self.encode(text)
        if encoded_text is None:
            return None
        data['label'] = np.array(encoded_text)
        return data


851
852
class VQATokenLabelEncode(object):
    """
WenmuZhou's avatar
WenmuZhou committed
853
    Label encode for NLP VQA methods
854
855
856
857
858
859
860
861
862
863
864
    """

    def __init__(self,
                 class_path,
                 contains_re=False,
                 add_special_ids=False,
                 algorithm='LayoutXLM',
                 infer_mode=False,
                 ocr_engine=None,
                 **kwargs):
        super(VQATokenLabelEncode, self).__init__()
WenmuZhou's avatar
WenmuZhou committed
865
        from paddlenlp.transformers import LayoutXLMTokenizer, LayoutLMTokenizer, LayoutLMv2Tokenizer
866
867
868
869
870
871
872
873
874
        from ppocr.utils.utility import load_vqa_bio_label_maps
        tokenizer_dict = {
            'LayoutXLM': {
                'class': LayoutXLMTokenizer,
                'pretrained_model': 'layoutxlm-base-uncased'
            },
            'LayoutLM': {
                'class': LayoutLMTokenizer,
                'pretrained_model': 'layoutlm-base-uncased'
WenmuZhou's avatar
WenmuZhou committed
875
876
877
878
            },
            'LayoutLMv2': {
                'class': LayoutLMv2Tokenizer,
                'pretrained_model': 'layoutlmv2-base-uncased'
879
880
881
882
883
884
885
886
887
888
889
890
            }
        }
        self.contains_re = contains_re
        tokenizer_config = tokenizer_dict[algorithm]
        self.tokenizer = tokenizer_config['class'].from_pretrained(
            tokenizer_config['pretrained_model'])
        self.label2id_map, id2label_map = load_vqa_bio_label_maps(class_path)
        self.add_special_ids = add_special_ids
        self.infer_mode = infer_mode
        self.ocr_engine = ocr_engine

    def __call__(self, data):
WenmuZhou's avatar
WenmuZhou committed
891
892
        # load bbox and label info
        ocr_info = self._load_ocr_info(data)
893

WenmuZhou's avatar
WenmuZhou committed
894
        height, width, _ = data['image'].shape
895
896
897
898
899

        words_list = []
        bbox_list = []
        input_ids_list = []
        token_type_ids_list = []
WenmuZhou's avatar
WenmuZhou committed
900
        segment_offset_id = []
901
902
        gt_label_list = []

WenmuZhou's avatar
WenmuZhou committed
903
904
905
906
907
908
909
910
911
        entities = []

        # for re
        train_re = self.contains_re and not self.infer_mode
        if train_re:
            relations = []
            id2label = {}
            entity_id_to_index_map = {}
            empty_entity = set()
WenmuZhou's avatar
WenmuZhou committed
912
913
914
915

        data['ocr_info'] = copy.deepcopy(ocr_info)

        for info in ocr_info:
WenmuZhou's avatar
WenmuZhou committed
916
            if train_re:
917
918
919
920
921
922
                # for re
                if len(info["text"]) == 0:
                    empty_entity.add(info["id"])
                    continue
                id2label[info["id"]] = info["label"]
                relations.extend([tuple(sorted(l)) for l in info["linking"]])
WenmuZhou's avatar
WenmuZhou committed
923
924
            # smooth_box
            bbox = self._smooth_box(info["bbox"], height, width)
925
926
927
928
929
930
931
932
933
934
935
936

            text = info["text"]
            encode_res = self.tokenizer.encode(
                text, pad_to_max_seq_len=False, return_attention_mask=True)

            if not self.add_special_ids:
                # TODO: use tok.all_special_ids to remove
                encode_res["input_ids"] = encode_res["input_ids"][1:-1]
                encode_res["token_type_ids"] = encode_res["token_type_ids"][1:
                                                                            -1]
                encode_res["attention_mask"] = encode_res["attention_mask"][1:
                                                                            -1]
WenmuZhou's avatar
WenmuZhou committed
937
938
939
940
941
942
            # parse label
            if not self.infer_mode:
                label = info['label']
                gt_label = self._parse_label(label, encode_res)

            # construct entities for re
WenmuZhou's avatar
WenmuZhou committed
943
944
945
946
            if train_re:
                if gt_label[0] != self.label2id_map["O"]:
                    entity_id_to_index_map[info["id"]] = len(entities)
                    label = label.upper()
947
948
949
950
                    entities.append({
                        "start": len(input_ids_list),
                        "end":
                        len(input_ids_list) + len(encode_res["input_ids"]),
WenmuZhou's avatar
WenmuZhou committed
951
                        "label": label.upper(),
952
                    })
WenmuZhou's avatar
WenmuZhou committed
953
954
955
956
957
958
            else:
                entities.append({
                    "start": len(input_ids_list),
                    "end": len(input_ids_list) + len(encode_res["input_ids"]),
                    "label": 'O',
                })
959
960
961
962
            input_ids_list.extend(encode_res["input_ids"])
            token_type_ids_list.extend(encode_res["token_type_ids"])
            bbox_list.extend([bbox] * len(encode_res["input_ids"]))
            words_list.append(text)
WenmuZhou's avatar
WenmuZhou committed
963
964
965
966
967
968
969
970
971
972
            segment_offset_id.append(len(input_ids_list))
            if not self.infer_mode:
                gt_label_list.extend(gt_label)

        data['input_ids'] = input_ids_list
        data['token_type_ids'] = token_type_ids_list
        data['bbox'] = bbox_list
        data['attention_mask'] = [1] * len(input_ids_list)
        data['labels'] = gt_label_list
        data['segment_offset_id'] = segment_offset_id
973
974
975
976
        data['tokenizer_params'] = dict(
            padding_side=self.tokenizer.padding_side,
            pad_token_type_id=self.tokenizer.pad_token_type_id,
            pad_token_id=self.tokenizer.pad_token_id)
WenmuZhou's avatar
WenmuZhou committed
977
        data['entities'] = entities
978

WenmuZhou's avatar
WenmuZhou committed
979
980
981
982
983
        if train_re:
            data['relations'] = relations
            data['id2label'] = id2label
            data['empty_entity'] = empty_entity
            data['entity_id_to_index_map'] = entity_id_to_index_map
984
985
        return data

WenmuZhou's avatar
WenmuZhou committed
986
    def _load_ocr_info(self, data):
WenmuZhou's avatar
WenmuZhou committed
987
988
989
990
991
992
993
        def trans_poly_to_bbox(poly):
            x1 = np.min([p[0] for p in poly])
            x2 = np.max([p[0] for p in poly])
            y1 = np.min([p[1] for p in poly])
            y2 = np.max([p[1] for p in poly])
            return [x1, y1, x2, y2]

WenmuZhou's avatar
WenmuZhou committed
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
        if self.infer_mode:
            ocr_result = self.ocr_engine.ocr(data['image'], cls=False)
            ocr_info = []
            for res in ocr_result:
                ocr_info.append({
                    "text": res[1][0],
                    "bbox": trans_poly_to_bbox(res[0]),
                    "poly": res[0],
                })
            return ocr_info
        else:
            info = data['label']
            # read text info
            info_dict = json.loads(info)
            return info_dict["ocr_info"]

    def _smooth_box(self, bbox, height, width):
        bbox[0] = int(bbox[0] * 1000.0 / width)
        bbox[2] = int(bbox[2] * 1000.0 / width)
        bbox[1] = int(bbox[1] * 1000.0 / height)
        bbox[3] = int(bbox[3] * 1000.0 / height)
        return bbox

    def _parse_label(self, label, encode_res):
        gt_label = []
        if label.lower() == "other":
            gt_label.extend([0] * len(encode_res["input_ids"]))
        else:
            gt_label.append(self.label2id_map[("b-" + label).upper()])
            gt_label.extend([self.label2id_map[("i-" + label).upper()]] *
                            (len(encode_res["input_ids"]) - 1))
        return gt_label
andyjpaddle's avatar
andyjpaddle committed
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056


class MultiLabelEncode(BaseRecLabelEncode):
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
        super(MultiLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

        self.ctc_encode = CTCLabelEncode(max_text_length, character_dict_path,
                                         use_space_char, **kwargs)
        self.sar_encode = SARLabelEncode(max_text_length, character_dict_path,
                                         use_space_char, **kwargs)

    def __call__(self, data):

        data_ctc = copy.deepcopy(data)
        data_sar = copy.deepcopy(data)
        data_out = dict()
        data_out['img_path'] = data.get('img_path', None)
        data_out['image'] = data['image']
        ctc = self.ctc_encode.__call__(data_ctc)
        sar = self.sar_encode.__call__(data_sar)
        if ctc is None or sar is None:
            return None
        data_out['label_ctc'] = ctc['label']
        data_out['label_sar'] = sar['label']
        data_out['length'] = ctc['length']
        return data_out