table_mv3.yml 2.63 KB
Newer Older
MissPenguin's avatar
MissPenguin committed
1
2
Global:
  use_gpu: true
MissPenguin's avatar
refine  
MissPenguin committed
3
  epoch_num: 50
MissPenguin's avatar
MissPenguin committed
4
5
6
  log_smooth_window: 20
  print_batch_step: 5
  save_model_dir: ./output/table_mv3/
MissPenguin's avatar
refine  
MissPenguin committed
7
8
  save_epoch_step: 5
  # evaluation is run every 400 iterations after the 0th iteration
MissPenguin's avatar
MissPenguin committed
9
10
11
12
13
14
15
16
17
18
19
  eval_batch_step: [0, 400]
  cal_metric_during_train: True
  pretrained_model: 
  checkpoints: 
  save_inference_dir:
  use_visualdl: False
  infer_img: doc/imgs_words/ch/word_1.jpg
  # for data or label process
  character_dict_path: ppocr/utils/dict/table_structure_dict.txt
  character_type: en
  max_text_length: 100
MissPenguin's avatar
refine  
MissPenguin committed
20
  max_elem_length: 500
MissPenguin's avatar
MissPenguin committed
21
22
23
24
25
  max_cell_num: 500
  infer_mode: False
  process_total_num: 0
  process_cut_num: 0

MissPenguin's avatar
refine  
MissPenguin committed
26

MissPenguin's avatar
MissPenguin committed
27
28
29
30
31
32
Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  clip_norm: 5.0
  lr:
MissPenguin's avatar
refine  
MissPenguin committed
33
    learning_rate: 0.001
MissPenguin's avatar
MissPenguin committed
34
35
36
37
38
39
40
41
42
43
  regularizer:
    name: 'L2'
    factor: 0.00000

Architecture:
  model_type: table
  algorithm: TableAttn
  Backbone:
    name: MobileNetV3
    scale: 1.0
MissPenguin's avatar
refine  
MissPenguin committed
44
45
    model_name: small
    disable_se: True
MissPenguin's avatar
MissPenguin committed
46
  Head:
MissPenguin's avatar
refine  
MissPenguin committed
47
48
    name: TableAttentionHead
    hidden_size: 256
MissPenguin's avatar
MissPenguin committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    l2_decay: 0.00001
    loc_type: 2

Loss:
  name: TableAttentionLoss
  structure_weight: 100.0
  loc_weight: 10000.0

PostProcess:
  name: TableLabelDecode

Metric:
  name: TableMetric
  main_indicator: acc

Train:
  dataset:
    name: PubTabDataSet
    data_dir: train_data/table/pubtabnet/train/
    label_file_path: train_data/table/pubtabnet/PubTabNet_2.0.0_train.jsonl
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - ResizeTableImage:
          max_len: 488
      - TableLabelEncode:
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - PaddingTableImage:
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'structure', 'bbox_list', 'sp_tokens', 'bbox_list_mask']
  loader:
    shuffle: True
    batch_size_per_card: 32
    drop_last: True
MissPenguin's avatar
refine  
MissPenguin committed
89
    num_workers: 1
MissPenguin's avatar
MissPenguin committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

Eval:
  dataset:
    name: PubTabDataSet
    data_dir: train_data/table/pubtabnet/val/
    label_file_path: train_data/table/pubtabnet/PubTabNet_2.0.0_val.jsonl
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - ResizeTableImage:
          max_len: 488
      - TableLabelEncode:
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - PaddingTableImage:
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'structure', 'bbox_list', 'sp_tokens', 'bbox_list_mask']
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 16
MissPenguin's avatar
refine  
MissPenguin committed
116
    num_workers: 1