module.py 4.21 KB
Newer Older
dyning's avatar
dyning committed
1
2
3
4
5
6
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
WenmuZhou's avatar
WenmuZhou committed
7
8
import sys
sys.path.insert(0, ".")
littletomatodonkey's avatar
littletomatodonkey committed
9
import copy
dyning's avatar
dyning committed
10
11
12
13
14
15
16
17

from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, runnable, serving
import cv2
import paddlehub as hub

from tools.infer.utility import base64_to_cv2
from tools.infer.predict_rec import TextRecognizer
littletomatodonkey's avatar
littletomatodonkey committed
18
from tools.infer.utility import parse_args
dyning's avatar
dyning committed
19
20
21
22
23
24
25
26
27
28


@moduleinfo(
    name="ocr_rec",
    version="1.0.0",
    summary="ocr recognition service",
    author="paddle-dev",
    author_email="paddle-dev@baidu.com",
    type="cv/text_recognition")
class OCRRec(hub.Module):
29
    def _initialize(self, use_gpu=False, enable_mkldnn=False):
dyning's avatar
dyning committed
30
31
32
        """
        initialize with the necessary elements
        """
littletomatodonkey's avatar
littletomatodonkey committed
33
        cfg = self.merge_configs()
dyning's avatar
dyning committed
34
35

        cfg.use_gpu = use_gpu
dyning's avatar
dyning committed
36
37
38
39
40
41
        if use_gpu:
            try:
                _places = os.environ["CUDA_VISIBLE_DEVICES"]
                int(_places[0])
                print("use gpu: ", use_gpu)
                print("CUDA_VISIBLE_DEVICES: ", _places)
dyning's avatar
dyning committed
42
                cfg.gpu_mem = 8000
dyning's avatar
dyning committed
43
44
45
46
            except:
                raise RuntimeError(
                    "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
                )
dyning's avatar
dyning committed
47
        cfg.ir_optim = True
48
        cfg.enable_mkldnn = enable_mkldnn
dyning's avatar
dyning committed
49

dyning's avatar
dyning committed
50
        self.text_recognizer = TextRecognizer(cfg)
dyning's avatar
dyning committed
51

littletomatodonkey's avatar
littletomatodonkey committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    def merge_configs(self, ):
        # deafult cfg
        backup_argv = copy.deepcopy(sys.argv)
        sys.argv = sys.argv[:1]
        cfg = parse_args()

        from ocr_det.params import read_params
        update_cfg_map = vars(read_params())

        for key in update_cfg_map:
            cfg.__setattr__(key, update_cfg_map[key])

        sys.argv = copy.deepcopy(backup_argv)
        return cfg

dyning's avatar
dyning committed
67
68
69
70
71
72
73
74
75
76
77
78
    def read_images(self, paths=[]):
        images = []
        for img_path in paths:
            assert os.path.isfile(
                img_path), "The {} isn't a valid file.".format(img_path)
            img = cv2.imread(img_path)
            if img is None:
                logger.info("error in loading image:{}".format(img_path))
                continue
            images.append(img)
        return images

WenmuZhou's avatar
WenmuZhou committed
79
    def predict(self, images=[], paths=[]):
dyning's avatar
dyning committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        """
        Get the text box in the predicted images.
        Args:
            images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
            paths (list[str]): The paths of images. If paths not images
        Returns:
            res (list): The result of text detection box and save path of images.
        """

        if images != [] and isinstance(images, list) and paths == []:
            predicted_data = images
        elif images == [] and isinstance(paths, list) and paths != []:
            predicted_data = self.read_images(paths)
        else:
            raise TypeError("The input data is inconsistent with expectations.")

        assert predicted_data != [], "There is not any image to be predicted. Please check the input data."
WenmuZhou's avatar
WenmuZhou committed
97

dyning's avatar
dyning committed
98
99
100
101
102
        img_list = []
        for img in predicted_data:
            if img is None:
                continue
            img_list.append(img)
WenmuZhou's avatar
WenmuZhou committed
103

dyning's avatar
dyning committed
104
        rec_res_final = []
dyning's avatar
dyning committed
105
        try:
dyning's avatar
dyning committed
106
            rec_res, predict_time = self.text_recognizer(img_list)
dyning's avatar
dyning committed
107
108
            for dno in range(len(rec_res)):
                text, score = rec_res[dno]
WenmuZhou's avatar
WenmuZhou committed
109
110
111
112
                rec_res_final.append({
                    'text': text,
                    'confidence': float(score),
                })
dyning's avatar
dyning committed
113
114
        except Exception as e:
            print(e)
dyning's avatar
dyning committed
115
116
117
118
            return [[]]

        return [rec_res_final]

dyning's avatar
dyning committed
119
120
121
122
123
124
    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        images_decode = [base64_to_cv2(image) for image in images]
dyning's avatar
dyning committed
125
        results = self.predict(images_decode, **kwargs)
dyning's avatar
dyning committed
126
127
        return results

WenmuZhou's avatar
WenmuZhou committed
128

dyning's avatar
dyning committed
129
130
131
132
133
134
135
if __name__ == '__main__':
    ocr = OCRRec()
    image_path = [
        './doc/imgs_words/ch/word_1.jpg',
        './doc/imgs_words/ch/word_2.jpg',
        './doc/imgs_words/ch/word_3.jpg',
    ]
dyning's avatar
dyning committed
136
    res = ocr.predict(paths=image_path)
WenmuZhou's avatar
WenmuZhou committed
137
    print(res)