module.py 4.17 KB
Newer Older
dyning's avatar
dyning committed
1
2
3
4
5
6
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
WenmuZhou's avatar
WenmuZhou committed
7
8
import sys
sys.path.insert(0, ".")
dyning's avatar
dyning committed
9

littletomatodonkey's avatar
littletomatodonkey committed
10
11
import copy

dyning's avatar
dyning committed
12
13
14
15
16
17
from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, runnable, serving
import cv2
import numpy as np
import paddlehub as hub

dyning's avatar
dyning committed
18
from tools.infer.utility import base64_to_cv2
dyning's avatar
dyning committed
19
from tools.infer.predict_det import TextDetector
littletomatodonkey's avatar
littletomatodonkey committed
20
from tools.infer.utility import parse_args
dyning's avatar
dyning committed
21
22
23
24
25
26
27
28
29
30


@moduleinfo(
    name="ocr_det",
    version="1.0.0",
    summary="ocr detection service",
    author="paddle-dev",
    author_email="paddle-dev@baidu.com",
    type="cv/text_recognition")
class OCRDet(hub.Module):
31
    def _initialize(self, use_gpu=False, enable_mkldnn=False):
dyning's avatar
dyning committed
32
33
34
        """
        initialize with the necessary elements
        """
littletomatodonkey's avatar
littletomatodonkey committed
35
        cfg = self.merge_configs()
dyning's avatar
dyning committed
36
37

        cfg.use_gpu = use_gpu
dyning's avatar
dyning committed
38
39
40
41
42
43
        if use_gpu:
            try:
                _places = os.environ["CUDA_VISIBLE_DEVICES"]
                int(_places[0])
                print("use gpu: ", use_gpu)
                print("CUDA_VISIBLE_DEVICES: ", _places)
dyning's avatar
dyning committed
44
                cfg.gpu_mem = 8000
dyning's avatar
dyning committed
45
46
47
48
            except:
                raise RuntimeError(
                    "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
                )
dyning's avatar
dyning committed
49
        cfg.ir_optim = True
50
        cfg.enable_mkldnn = enable_mkldnn
dyning's avatar
dyning committed
51

dyning's avatar
dyning committed
52
        self.text_detector = TextDetector(cfg)
dyning's avatar
dyning committed
53

littletomatodonkey's avatar
littletomatodonkey committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    def merge_configs(self, ):
        # deafult cfg
        backup_argv = copy.deepcopy(sys.argv)
        sys.argv = sys.argv[:1]
        cfg = parse_args()

        from ocr_det.params import read_params
        update_cfg_map = vars(read_params())

        for key in update_cfg_map:
            cfg.__setattr__(key, update_cfg_map[key])

        sys.argv = copy.deepcopy(backup_argv)
        return cfg

dyning's avatar
dyning committed
69
70
71
72
73
74
75
76
77
78
79
80
    def read_images(self, paths=[]):
        images = []
        for img_path in paths:
            assert os.path.isfile(
                img_path), "The {} isn't a valid file.".format(img_path)
            img = cv2.imread(img_path)
            if img is None:
                logger.info("error in loading image:{}".format(img_path))
                continue
            images.append(img)
        return images

WenmuZhou's avatar
WenmuZhou committed
81
    def predict(self, images=[], paths=[]):
dyning's avatar
dyning committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
        """
        Get the text box in the predicted images.
        Args:
            images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
            paths (list[str]): The paths of images. If paths not images
        Returns:
            res (list): The result of text detection box and save path of images.
        """

        if images != [] and isinstance(images, list) and paths == []:
            predicted_data = images
        elif images == [] and isinstance(paths, list) and paths != []:
            predicted_data = self.read_images(paths)
        else:
            raise TypeError("The input data is inconsistent with expectations.")

        assert predicted_data != [], "There is not any image to be predicted. Please check the input data."
WenmuZhou's avatar
WenmuZhou committed
99

dyning's avatar
dyning committed
100
101
102
103
        all_results = []
        for img in predicted_data:
            if img is None:
                logger.info("error in loading image")
dyning's avatar
dyning committed
104
                all_results.append([])
dyning's avatar
dyning committed
105
                continue
dyning's avatar
dyning committed
106
            dt_boxes, elapse = self.text_detector(img)
dyning's avatar
dyning committed
107
            logger.info("Predict time : {}".format(elapse))
dyning's avatar
dyning committed
108

dyning's avatar
dyning committed
109
110
            rec_res_final = []
            for dno in range(len(dt_boxes)):
WenmuZhou's avatar
WenmuZhou committed
111
112
113
                rec_res_final.append({
                    'text_region': dt_boxes[dno].astype(np.int).tolist()
                })
dyning's avatar
dyning committed
114
            all_results.append(rec_res_final)
dyning's avatar
dyning committed
115
116
117
118
119
120
121
122
        return all_results

    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        images_decode = [base64_to_cv2(image) for image in images]
dyning's avatar
dyning committed
123
        results = self.predict(images_decode, **kwargs)
dyning's avatar
dyning committed
124
125
        return results

WenmuZhou's avatar
WenmuZhou committed
126

dyning's avatar
dyning committed
127
128
129
130
131
132
if __name__ == '__main__':
    ocr = OCRDet()
    image_path = [
        './doc/imgs/11.jpg',
        './doc/imgs/12.jpg',
    ]
dyning's avatar
dyning committed
133
    res = ocr.predict(paths=image_path)
WenmuZhou's avatar
WenmuZhou committed
134
    print(res)