README_zh-CN.md 35 KB
Newer Older
xuchao's avatar
xuchao committed
1
2
<div align="center" xmlns="http://www.w3.org/1999/html">
<!-- logo -->
徐超's avatar
徐超 committed
3
<p align="center">
xuchao's avatar
xuchao committed
4
  <img src="docs/images/MinerU-logo.png" width="300px" style="vertical-align:middle;">
徐超's avatar
徐超 committed
5
</p>
赵小蒙's avatar
赵小蒙 committed
6

xuchao's avatar
xuchao committed
7
<!-- icon -->
8

赵小蒙's avatar
赵小蒙 committed
9
10
11
[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
myhloli's avatar
myhloli committed
12
13
14
15
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![PyPI version](https://badge.fury.io/py/magic-pdf.svg)](https://badge.fury.io/py/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf)
16

quyuan's avatar
quyuan committed
17
<<<<<<< HEAD
18
19
[![HuggingFace](https://img.shields.io/badge/HuggingFace-Demo-yellow.svg?logo=)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/ModelScope-Demo-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
quyuan's avatar
quyuan committed
20
=======
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
21
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://opendatalab.com/OpenSourceTools/Extractor/PDF)
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
22
23
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
quyuan's avatar
quyuan committed
24
>>>>>>> 0140d7d271ac3b1561ca2272030e9e038b469999
25
26
27
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/papayalove/b5f4913389e7ff9883c6b687de156e78/mineru_demo.ipynb)
[![Paper](https://img.shields.io/badge/Paper-arXiv-green)](#)

myhloli's avatar
myhloli committed
28
<a href="https://trendshift.io/repositories/11174" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11174" alt="opendatalab%2FMinerU | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
赵小蒙's avatar
赵小蒙 committed
29

xuchao's avatar
xuchao committed
30
<!-- language -->
赵小蒙's avatar
赵小蒙 committed
31

32
[English](README.md) | [简体中文](README_zh-CN.md)
赵小蒙's avatar
赵小蒙 committed
33

xuchao's avatar
xuchao committed
34
<!-- hot link -->
35

徐超's avatar
徐超 committed
36
37
38
39
<p align="center">
<a href="https://github.com/opendatalab/PDF-Extract-Kit">PDF-Extract-Kit: 高质量PDF解析工具箱</a>🔥🔥🔥
</p>

xuchao's avatar
xuchao committed
40
<!-- join us -->
41

徐超's avatar
徐超 committed
42
<p align="center">
xuchao's avatar
xuchao committed
43
    👋 join us on <a href="https://discord.gg/Tdedn9GTXq" target="_blank">Discord</a> and <a href="https://cdn.vansin.top/internlm/mineru.jpg" target="_blank">WeChat</a>
徐超's avatar
徐超 committed
44
</p>
赵小蒙's avatar
赵小蒙 committed
45

xuchao's avatar
xuchao committed
46
</div>
赵小蒙's avatar
赵小蒙 committed
47

xuchao's avatar
xuchao committed
48
# 更新记录
drunkpig's avatar
drunkpig committed
49
- 2024/09/09 0.8.0发布,支持Dockerfile快速部署,同时上线了huggingface、modelscope demo
50
- 2024/08/30 0.7.1发布,集成了paddle tablemaster表格识别功能
xuchao's avatar
xuchao committed
51
52
53
54
55
- 2024/08/09 0.7.0b1发布,简化安装步骤提升易用性,加入表格识别功能
- 2024/08/01 0.6.2b1发布,优化了依赖冲突问题和安装文档
- 2024/07/05 首次开源

<!-- TABLE OF CONTENT -->
56

xuchao's avatar
xuchao committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
<details open="open">
  <summary><h2 style="display: inline-block">文档目录</h2></summary>
  <ol>
    <li>
      <a href="#mineru">MinerU</a>
      <ul>
        <li><a href="#项目简介">项目简介</a></li>
        <li><a href="#主要功能">主要功能</a></li>
        <li><a href="#快速开始">快速开始</a>
            <ul>
            <li><a href="#在线体验">在线体验</a></li>
            <li><a href="#使用CPU快速体验">使用CPU快速体验</a></li>
            <li><a href="#使用GPU">使用GPU</a></li>
            </ul>
        </li>
        <li><a href="#使用">使用方式</a>
            <ul>
            <li><a href="#命令行">命令行</a></li>
            <li><a href="#api">API</a></li>
            <li><a href="#二次开发">二次开发</a></li>
            </ul>
        </li>
      </ul>
    </li>
    <li><a href="#todo">TODO</a></li>
    <li><a href="#known-issues">Known Issues</a></li>
    <li><a href="#faq">FAQ</a></li>
    <li><a href="#all-thanks-to-our-contributors">Contributors</a></li>
    <li><a href="#license-information">License Information</a></li>
    <li><a href="#acknowledgments">Acknowledgements</a></li>
    <li><a href="#citation">Citation</a></li>
    <li><a href="#star-history">Star History</a></li>
    <li><a href="#magic-doc">magic-doc快速提取PPT/DOC/PDF</a></li>
    <li><a href="#magic-html">magic-html提取混合网页内容</a></li>
    <li><a href="#links">Links</a></li>
  </ol>
</details>

# MinerU
96

xuchao's avatar
xuchao committed
97
## 项目简介
98

xuchao's avatar
xuchao committed
99
100
101
MinerU是一款将PDF转化为机器可读格式的工具(如markdown、json),可以很方便地抽取为任意格式。
MinerU诞生于[书生-浦语](https://github.com/InternLM/InternLM)的预训练过程中,我们将会集中精力解决科技文献中的符号转化问题,希望在大模型时代为科技发展做出贡献。
相比国内外知名商用产品MinerU还很年轻,如果遇到问题或者结果不及预期请到[issue](https://github.com/opendatalab/MinerU/issues)提交问题,同时**附上相关PDF**
myhloli's avatar
myhloli committed
102

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
103
https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c
myhloli's avatar
myhloli committed
104

xuchao's avatar
xuchao committed
105
## 主要功能
myhloli's avatar
myhloli committed
106

xuchao's avatar
xuchao committed
107
108
109
110
111
112
113
114
115
- 删除页眉、页脚、脚注、页码等元素,保持语义连贯
- 对多栏输出符合人类阅读顺序的文本
- 保留原文档的结构,包括标题、段落、列表等
- 提取图像、图片标题、表格、表格标题
- 自动识别文档中的公式并将公式转换成latex
- 自动识别文档中的表格并将表格转换成latex
- 乱码PDF自动检测并启用OCR
- 支持CPU和GPU环境
- 支持windows/linux/mac平台
赵小蒙's avatar
update:  
赵小蒙 committed
116

xuchao's avatar
xuchao committed
117
118
119
120
121
## 快速开始

如果遇到任何安装问题,请先查询 <a href="#faq">FAQ</a> </br>
如果遇到解析效果不及预期,参考 <a href="#known-issues">Known Issues</a></br>
有3种不同方式可以体验MinerU的效果:
122

xuchao's avatar
xuchao committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
- [在线体验(无需任何安装)](#在线体验)
- [使用CPU快速体验(Windows,Linux,Mac)](#使用cpu快速体验)
- [Linux/Windows + CUDA](#使用gpu)

**⚠️安装前必看——软硬件环境支持说明**

为了确保项目的稳定性和可靠性,我们在开发过程中仅对特定的软硬件环境进行优化和测试。这样当用户在推荐的系统配置上部署和运行项目时,能够获得最佳的性能表现和最少的兼容性问题。

通过集中资源和精力于主线环境,我们团队能够更高效地解决潜在的BUG,及时开发新功能。

在非主线环境中,由于硬件、软件配置的多样性,以及第三方依赖项的兼容性问题,我们无法100%保证项目的完全可用性。因此,对于希望在非推荐环境中使用本项目的用户,我们建议先仔细阅读文档以及FAQ,大多数问题已经在FAQ中有对应的解决方案,除此之外我们鼓励社区反馈问题,以便我们能够逐步扩大支持范围。

<table>
    <tr>
        <td colspan="3" rowspan="2">操作系统</td>
    </tr>
    <tr>
        <td>Ubuntu 22.04 LTS</td>
        <td>Windows 10 / 11</td>
        <td>macOS 11+</td>
    </tr>
    <tr>
        <td colspan="3">CPU</td>
        <td>x86_64</td>
        <td>x86_64</td>
        <td>x86_64 / arm64</td>
    </tr>
    <tr>
        <td colspan="3">内存</td>
        <td colspan="3">大于等于16GB,推荐32G以上</td>
    </tr>
    <tr>
        <td colspan="3">python版本</td>
        <td colspan="3">3.10</td>
    </tr>
    <tr>
        <td colspan="3">Nvidia Driver 版本</td>
        <td>latest(专有驱动)</td>
        <td>latest</td>
        <td>None</td>
    </tr>
    <tr>
        <td colspan="3">CUDA环境</td>
        <td>自动安装[12.1(pytorch)+11.8(paddle)]</td>
        <td>11.8(手动安装)+cuDNN v8.7.0(手动安装)</td>
        <td>None</td>
    </tr>
    <tr>
        <td rowspan="2">GPU硬件支持列表</td>
        <td colspan="2">最低要求 8G+显存</td>
        <td colspan="2">3060ti/3070/3080/3080ti/4060/4070/4070ti<br>
        8G显存仅可开启lavout和公式识别加速</td>
        <td rowspan="2">None</td>
    </tr>
    <tr>
        <td colspan="2">推荐配置 16G+显存</td>
        <td colspan="2">3090/3090ti/4070tisuper/4080/4090<br>
sfk's avatar
sfk committed
180
181
182
        16G及以上可以同时开启layout,公式识别和ocr加速<br>
        24G及以上可以同时开启layout,公式识别,ocr加速和表格识别
        </td>
xuchao's avatar
xuchao committed
183
184
185
186
187
    </tr>
</table>

### 在线体验

quyuan's avatar
quyuan committed
188
<<<<<<< HEAD
xuchao's avatar
xuchao committed
189
[在线体验点击这里](https://opendatalab.com/OpenSourceTools/Extractor/PDF)
quyuan's avatar
quyuan committed
190
=======
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
191
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://opendatalab.com/OpenSourceTools/Extractor/PDF)
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
192
193
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
quyuan's avatar
quyuan committed
194
>>>>>>> 0140d7d271ac3b1561ca2272030e9e038b469999
xuchao's avatar
xuchao committed
195
196
197
198

### 使用CPU快速体验

#### 1. 安装magic-pdf
199

xuchao's avatar
xuchao committed
200
最新版本国内镜像源同步可能会有延迟,请耐心等待
201

202
203
204
```bash
conda create -n MinerU python=3.10
conda activate MinerU
205
pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com -i https://pypi.tuna.tsinghua.edu.cn/simple
206
```
207

208
#### 2. 下载模型权重文件
赵小蒙's avatar
赵小蒙 committed
209

xuchao's avatar
xuchao committed
210
详细参考 [如何下载模型文件](docs/how_to_download_models_zh_cn.md)
211

212
> ❗️模型下载后请务必检查模型文件是否下载完整
213
>
214
> 请检查目录下的模型文件大小与网页上描述是否一致,如果可以的话,最好通过sha256校验模型是否下载完整
215
216

#### 3. 拷贝配置文件并进行配置
217

218
在仓库根目录可以获得 [magic-pdf.template.json](magic-pdf.template.json) 配置模版文件
219

220
> ❗️务必执行以下命令将配置文件拷贝到【用户目录】下,否则程序将无法运行
221
222
223
>
> windows的用户目录为 "C:\\Users\\用户名", linux用户目录为 "/home/用户名", macOS用户目录为 "/Users/用户名"

赵小蒙's avatar
赵小蒙 committed
224
```bash
赵小蒙's avatar
赵小蒙 committed
225
cp magic-pdf.template.json ~/magic-pdf.json
226
```
227
228

在用户目录中找到magic-pdf.json文件并配置"models-dir"为[2. 下载模型权重文件](#2-下载模型权重文件)中下载的模型权重文件所在目录
229

230
> ❗️务必正确配置模型权重文件所在目录的【绝对路径】,否则会因为找不到模型文件而导致程序无法运行
xuchao's avatar
xuchao committed
231
>
232
233
234
> windows系统中此路径应包含盘符,且需把路径中所有的`"\"`替换为`"/"`,否则会因为转义原因导致json文件语法错误。
> 

235
> 例如:模型放在D盘根目录的models目录,则model-dir的值应为"D:/models"
236

237
238
```json
{
xuchao's avatar
xuchao committed
239
240
241
  // other config
  "models-dir": "D:/models",
  "table-config": {
242
        "model": "TableMaster", // 使用structEqTable请修改为'struct_eqtable'
xuchao's avatar
xuchao committed
243
244
245
        "is_table_recog_enable": false, // 表格识别功能默认是关闭的,如果需要修改此处的值
        "max_time": 400
    }
246
247
248
}
```

xuchao's avatar
xuchao committed
249
### 使用GPU
250

xuchao's avatar
xuchao committed
251
如果您的设备支持CUDA,且满足主线环境中的显卡要求,则可以使用GPU加速,请根据自己的系统选择适合的教程:
252

xuchao's avatar
xuchao committed
253
254
- [Ubuntu22.04LTS + GPU](docs/README_Ubuntu_CUDA_Acceleration_zh_CN.md)
- [Windows10/11 + GPU](docs/README_Windows_CUDA_Acceleration_zh_CN.md)
255
256
- 使用Docker快速部署
    > Docker 需设备gpu显存大于等于16GB,默认开启所有加速功能
257
258
259
260
261
262
    > 
    > 运行本docker前可以通过以下命令检测自己的设备是否支持在docker上使用CUDA加速
    > 
    > ```bash
    > docker run --rm --gpus=all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi
    > ```
263
264
  ```bash
  wget https://github.com/opendatalab/MinerU/raw/master/Dockerfile
265
266
  docker build -t mineru:latest .
  docker run --rm -it --gpus=all mineru:latest /bin/bash
267
268
269
  magic-pdf --help
  ```
    
270

xuchao's avatar
xuchao committed
271
## 使用
272

xuchao's avatar
xuchao committed
273
### 命令行
274
275

```bash
xuchao's avatar
xuchao committed
276
277
278
279
280
281
282
magic-pdf --help
Usage: magic-pdf [OPTIONS]

Options:
  -v, --version                display the version and exit
  -p, --path PATH              local pdf filepath or directory  [required]
  -o, --output-dir TEXT        output local directory
283
  -m, --method [ocr|txt|auto]  the method for parsing pdf.
xuchao's avatar
xuchao committed
284
285
286
287
                               ocr: using ocr technique to extract information from pdf,
                               txt: suitable for the text-based pdf only and outperform ocr,
                               auto: automatically choose the best method for parsing pdf
                                  from ocr and txt.
288
                               without method specified, auto will be used by default.
xuchao's avatar
xuchao committed
289
290
291
292
293
294
295
296
  --help                       Show this message and exit.


## show version
magic-pdf -v

## command line example
magic-pdf -p {some_pdf} -o {some_output_dir} -m auto
297
298
```

xuchao's avatar
xuchao committed
299
300
301
302
其中 `{some_pdf}` 可以是单个pdf文件,也可以是一个包含多个pdf文件的目录。
运行完命令后输出的结果会保存在`{some_output_dir}`目录下, 输出的文件列表如下

```text
303
304
305
306
307
308
309
├── some_pdf.md                          # markdown 文件
├── images                               # 存放图片目录
├── some_pdf_layout.pdf                  # layout 绘图
├── some_pdf_middle.json                 # minerU 中间处理结果
├── some_pdf_model.json                  # 模型推理结果
├── some_pdf_origin.pdf                  # 原 pdf 文件
└── some_pdf_spans.pdf                   # 最小粒度的bbox位置信息绘图
310
311
```

xuchao's avatar
xuchao committed
312
更多有关输出文件的信息,请参考[输出文件说明](docs/output_file_zh_cn.md)
313

xuchao's avatar
xuchao committed
314
315
316
### API

处理本地磁盘上的文件
317

赵小蒙's avatar
赵小蒙 committed
318
319
320
```python
image_writer = DiskReaderWriter(local_image_dir)
image_dir = str(os.path.basename(local_image_dir))
xuchao's avatar
xuchao committed
321
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
322
323
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
xuchao's avatar
xuchao committed
324
pipe.pipe_analyze()
赵小蒙's avatar
赵小蒙 committed
325
326
327
328
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

xuchao's avatar
xuchao committed
329
处理对象存储上的文件
330

赵小蒙's avatar
赵小蒙 committed
331
332
333
334
335
```python
s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint)
image_dir = "s3://img_bucket/"
s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir)
pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN)
xuchao's avatar
xuchao committed
336
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
337
338
pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli)
pipe.pipe_classify()
xuchao's avatar
xuchao committed
339
pipe.pipe_analyze()
赵小蒙's avatar
赵小蒙 committed
340
341
342
343
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

344
345
详细实现可参考

xuchao's avatar
xuchao committed
346
347
- [demo.py 最简单的处理方式](demo/demo.py)
- [magic_pdf_parse_main.py 能够更清晰看到处理流程](demo/magic_pdf_parse_main.py)
myhloli's avatar
myhloli committed
348

xuchao's avatar
xuchao committed
349
### 二次开发
350

xuchao's avatar
xuchao committed
351
TODO
352

xuchao's avatar
xuchao committed
353
# TODO
赵小蒙's avatar
赵小蒙 committed
354

xuchao's avatar
xuchao committed
355
356
357
358
359
- [ ] 基于语义的阅读顺序
- [ ] 正文中列表识别
- [ ] 正文中代码块识别
- [ ] 目录识别
- [x] 表格识别
360
- [ ] [化学式识别](docs/chemical_knowledge_introduction/introduction.pdf)
xuchao's avatar
xuchao committed
361
- [ ] 几何图形识别
赵小蒙's avatar
赵小蒙 committed
362

xuchao's avatar
xuchao committed
363
# Known Issues
364

xuchao's avatar
xuchao committed
365
366
367
368
369
370
- 阅读顺序基于规则的分割,在一些情况下会乱序
- 不支持竖排文字
- 列表、代码块、目录在layout模型里还没有支持
- 漫画书、艺术图册、小学教材、习题尚不能很好解析
- 在一些公式密集的PDF上强制启用OCR效果会更好
- 如果您要处理包含大量公式的pdf,强烈建议开启OCR功能。使用pymuPDF提取文字的时候会出现文本行互相重叠的情况导致公式插入位置不准确。
371

372

drunkpig's avatar
drunkpig committed
373
# FAQ
374

xuchao's avatar
xuchao committed
375
[常见问题](docs/FAQ_zh_cn.md)
赵小蒙's avatar
赵小蒙 committed
376

377

378
[FAQ](docs/FAQ_en_us.md)
myhloli's avatar
myhloli committed
379

xuchao's avatar
xuchao committed
380
# All Thanks To Our Contributors
赵小蒙's avatar
赵小蒙 committed
381

382
<a href="https://github.com/opendatalab/MinerU/graphs/contributors">
赵小蒙's avatar
赵小蒙 committed
383
384
385
  <img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>

xuchao's avatar
xuchao committed
386
# License Information
赵小蒙's avatar
赵小蒙 committed
387
388
389
390
391

[LICENSE.md](LICENSE.md)

本项目目前采用PyMuPDF以实现高级功能,但因其遵循AGPL协议,可能对某些使用场景构成限制。未来版本迭代中,我们计划探索并替换为许可条款更为宽松的PDF处理库,以提升用户友好度及灵活性。

xuchao's avatar
xuchao committed
392
# Acknowledgments
393

xuchao's avatar
xuchao committed
394
395
- [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit)
- [StructEqTable](https://github.com/UniModal4Reasoning/StructEqTable-Deploy)
赵小蒙's avatar
赵小蒙 committed
396
397
- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
赵小蒙's avatar
赵小蒙 committed
398
399
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
赵小蒙's avatar
赵小蒙 committed
400

xuchao's avatar
xuchao committed
401
# Citation
赵小蒙's avatar
赵小蒙 committed
402
403

```bibtex
xuchao's avatar
xuchao committed
404
405
406
407
408
409
410
@article{he2024opendatalab,
  title={Opendatalab: Empowering general artificial intelligence with open datasets},
  author={He, Conghui and Li, Wei and Jin, Zhenjiang and Xu, Chao and Wang, Bin and Lin, Dahua},
  journal={arXiv preprint arXiv:2407.13773},
  year={2024}
}

赵小蒙's avatar
赵小蒙 committed
411
412
413
414
415
416
417
418
419
@misc{2024mineru,
    title={MinerU: A One-stop, Open-source, High-quality Data Extraction Tool},
    author={MinerU Contributors},
    howpublished = {\url{https://github.com/opendatalab/MinerU}},
    year={2024}
}
```

# Star History
赵小蒙's avatar
赵小蒙 committed
420

赵小蒙's avatar
赵小蒙 committed
421
422
423
424
425
426
<a>
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
 </picture>
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
427
</a>
qiangqiang199's avatar
qiangqiang199 committed
428

xuchao's avatar
xuchao committed
429
# Magic-doc
430

xuchao's avatar
xuchao committed
431
432
433
[Magic-Doc](https://github.com/InternLM/magic-doc) Fast speed ppt/pptx/doc/docx/pdf extraction tool

# Magic-html
434

xuchao's avatar
xuchao committed
435
436
437
438
439
440
441
[Magic-HTML](https://github.com/opendatalab/magic-html) Mixed web page extraction tool

# Links

- [LabelU (A Lightweight Multi-modal Data Annotation Tool)](https://github.com/opendatalab/labelU)
- [LabelLLM (An Open-source LLM Dialogue Annotation Platform)](https://github.com/opendatalab/LabelLLM)
- [PDF-Extract-Kit (A Comprehensive Toolkit for High-Quality PDF Content Extraction)](https://github.com/opendatalab/PDF-Extract-Kit)