magic_model.py 14 KB
Newer Older
1
import json
许瑞's avatar
许瑞 committed
2
import math
3
4
5
6
7
8
9
10

from magic_pdf.libs.commons import fitz
from loguru import logger

from magic_pdf.libs.commons import join_path
from magic_pdf.libs.coordinate_transform import get_scale_ratio
from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
许瑞's avatar
许瑞 committed
11
12
from magic_pdf.libs.math import float_gt
from magic_pdf.libs.boxbase import _is_in, bbox_relative_pos, bbox_distance
kernel.h@qq.com's avatar
kernel.h@qq.com committed
13
14


许瑞's avatar
许瑞 committed
15
class MagicModel:
kernel.h@qq.com's avatar
kernel.h@qq.com committed
16
17
    """
    每个函数没有得到元素的时候返回空list
许瑞's avatar
许瑞 committed
18

kernel.h@qq.com's avatar
kernel.h@qq.com committed
19
    """
20
21
22

    def __fix_axis(self):
        for model_page_info in self.__model_list:
许瑞's avatar
许瑞 committed
23
24
25
26
            page_no = model_page_info["page_info"]["page_no"]
            horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
                model_page_info, self.__docs[page_no]
            )
27
28
29
30
31
32
33
34
35
36
37
38
            layout_dets = model_page_info["layout_dets"]
            for layout_det in layout_dets:
                x0, y0, _, _, x1, y1, _, _ = layout_det["poly"]
                bbox = [
                    int(x0 / horizontal_scale_ratio),
                    int(y0 / vertical_scale_ratio),
                    int(x1 / horizontal_scale_ratio),
                    int(y1 / vertical_scale_ratio),
                ]
                layout_det["bbox"] = bbox

    def __init__(self, model_list: list, docs: fitz.Document):
kernel.h@qq.com's avatar
kernel.h@qq.com committed
39
        self.__model_list = model_list
40
        self.__docs = docs
kernel.h@qq.com's avatar
kernel.h@qq.com committed
41
        self.__fix_axis()
42

许瑞's avatar
许瑞 committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    def __reduct_overlap(self, bboxes):
        N = len(bboxes)
        keep = [True] * N
        for i in range(N):
            for j in range(N):
                if i == j:
                    continue
                if _is_in(bboxes[i], bboxes[j]):
                    keep[i] = False

        return [bboxes[i] for i in range(N) if keep[i]]

    def __tie_up_category_by_distance(
        self, page_no, subject_category_id, object_category_id
    ):
        """
        假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject
        """
        ret = []
        MAX_DIS_OF_POINT = 10**9 + 7

        subjects = self.__reduct_overlap(
            list(
                map(
                    lambda x: x["bbox"],
                    filter(
                        lambda x: x["category_id"] == subject_category_id,
                        self.__model_list[page_no]["layout_dets"],
                    ),
                )
            )
        )

        objects = self.__reduct_overlap(
            list(
                map(
                    lambda x: x["bbox"],
                    filter(
                        lambda x: x["category_id"] == object_category_id,
                        self.__model_list[page_no]["layout_dets"],
                    ),
                )
            )
        )
        subject_object_relation_map = {}

        subjects.sort(key=lambda x: x[0] ** 2 + x[1] ** 2)  # get the distance !

        all_bboxes = []

        for v in subjects:
            all_bboxes.append({"category_id": subject_category_id, "bbox": v})

        for v in objects:
            all_bboxes.append({"category_id": object_category_id, "bbox": v})

        N = len(all_bboxes)
        dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]

        for i in range(N):
            for j in range(i):
                if (
                    all_bboxes[i]["category_id"] == subject_category_id
                    and all_bboxes[j]["category_id"] == subject_category_id
                ):
                    continue

                dis[i][j] = bbox_distance(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"])
                dis[j][i] = dis[i][j]

        used = set()
        for i in range(N):
            # 求第 i 个 subject 所关联的 object
            if all_bboxes[i]["category_id"] != subject_category_id:
                continue
            seen = set()
            candidates = []
            arr = []
            for j in range(N):

                pos_flag_count = sum(
                    list(
                        map(
                            lambda x: 1 if x else 0,
                            bbox_relative_pos(
                                all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
                            ),
                        )
                    )
                )
                if pos_flag_count > 1:
                    continue
                if (
                    all_bboxes[j]["category_id"] != object_category_id
                    or j in used
                    or dis[i][j] == MAX_DIS_OF_POINT
                ):
                    continue
                arr.append((dis[i][j], j))

            arr.sort(key=lambda x: x[0])
            if len(arr) > 0:
                candidates.append(arr[0][1])
                seen.add(arr[0][1])

            # 已经获取初始种子
            for j in set(candidates):
                tmp = []
                for k in range(i + 1, N):
                    pos_flag_count = sum(
                        list(
                            map(
                                lambda x: 1 if x else 0,
                                bbox_relative_pos(
                                    all_bboxes[j]["bbox"], all_bboxes[k]["bbox"]
                                ),
                            )
                        )
                    )

                    if pos_flag_count > 1:
                        continue
165

许瑞's avatar
许瑞 committed
166
167
168
169
170
171
172
173
174
175
176
                    if (
                        all_bboxes[k]["category_id"] != object_category_id
                        or k in used
                        or k in seen
                        or dis[j][k] == MAX_DIS_OF_POINT
                    ):
                        continue
                    is_nearest = True
                    for l in range(i + 1, N):
                        if l in (j, k) or l in used or l in seen:
                            continue
177

许瑞's avatar
许瑞 committed
178
179
180
                        if not float_gt(dis[l][k], dis[j][k]):
                            is_nearest = False
                            break
181

许瑞's avatar
许瑞 committed
182
183
184
                    if is_nearest:
                        tmp.append(k)
                        seen.add(k)
185

许瑞's avatar
许瑞 committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
                candidates = tmp
                if len(candidates) == 0:
                    break

            # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
            # 先扩一下 bbox,
            x0s = [all_bboxes[idx]["bbox"][0] for idx in seen] + [
                all_bboxes[i]["bbox"][0]
            ]
            y0s = [all_bboxes[idx]["bbox"][1] for idx in seen] + [
                all_bboxes[i]["bbox"][1]
            ]
            x1s = [all_bboxes[idx]["bbox"][2] for idx in seen] + [
                all_bboxes[i]["bbox"][2]
            ]
            y1s = [all_bboxes[idx]["bbox"][3] for idx in seen] + [
                all_bboxes[i]["bbox"][3]
            ]

            ox0, oy0, ox1, oy1 = min(x0s), min(y0s), max(x1s), max(y1s)
            ix0, iy0, ix1, iy1 = all_bboxes[i]["bbox"]

            # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
            caption_poses = [
                [ox0, oy0, ix0, oy1],
                [ox0, oy0, ox1, iy0],
                [ox0, iy1, ox1, oy1],
                [ix1, oy0, ox1, oy1],
            ]

            caption_areas = []
            for bbox in caption_poses:
                embed_arr = []
                for idx in seen:
                    if _is_in(all_bboxes[idx]["bbox"], bbox):
                        embed_arr.append(idx)

                if len(embed_arr) > 0:
                    embed_x0 = min([all_bboxes[idx]["bbox"][0] for idx in embed_arr])
                    embed_y0 = min([all_bboxes[idx]["bbox"][1] for idx in embed_arr])
                    embed_x1 = max([all_bboxes[idx]["bbox"][2] for idx in embed_arr])
                    embed_y1 = max([all_bboxes[idx]["bbox"][3] for idx in embed_arr])
                    caption_areas.append(
                        int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
                    )
                else:
                    caption_areas.append(0)

            subject_object_relation_map[i] = []
            if max(caption_areas) > 0:
                max_area_idx = caption_areas.index(max(caption_areas))
                caption_bbox = caption_poses[max_area_idx]

                for j in seen:
                    if _is_in(all_bboxes[j]["bbox"], caption_bbox):
                        used.add(j)
                        subject_object_relation_map[i].append(j)

        for i in sorted(subject_object_relation_map.keys()):
            result = {
                "subject_body": all_bboxes[i]["bbox"],
                "all": all_bboxes[i]["bbox"],
            }

            if len(subject_object_relation_map[i]) > 0:
                x0 = min(
                    [all_bboxes[j]["bbox"][0] for j in subject_object_relation_map[i]]
                )
                y0 = min(
                    [all_bboxes[j]["bbox"][1] for j in subject_object_relation_map[i]]
                )
                x1 = max(
                    [all_bboxes[j]["bbox"][2] for j in subject_object_relation_map[i]]
                )
                y1 = max(
                    [all_bboxes[j]["bbox"][3] for j in subject_object_relation_map[i]]
                )
                result["object_body"] = [x0, y0, x1, y1]
                result["all"] = [
                    min(x0, all_bboxes[i]["bbox"][0]),
                    min(y0, all_bboxes[i]["bbox"][1]),
                    max(x1, all_bboxes[i]["bbox"][2]),
                    max(y1, all_bboxes[i]["bbox"][3]),
                ]
            ret.append(result)

        total_subject_object_dis = 0
        # 计算已经配对的 distance 距离
        for i in subject_object_relation_map.keys():
            for j in subject_object_relation_map[i]:
                total_subject_object_dis += bbox_distance(
                    all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
                )

        # 计算未匹配的 subject 和 object 的距离(非精确版)
        with_caption_subject = set(
            [
                key
                for key in subject_object_relation_map.keys()
                if len(subject_object_relation_map[i]) > 0
            ]
        )
        for i in range(N):
            if all_bboxes[i]["category_id"] != object_category_id or i in used:
                continue
            candidates = []
            for j in range(N):
                if (
                    all_bboxes[j]["category_id"] != subject_category_id
                    or j in with_caption_subject
                ):
                    continue
                candidates.append((dis[i][j], j))
            if len(candidates) > 0:
                candidates.sort(key=lambda x: x[0])
                total_subject_object_dis += candidates[0][1]
                with_caption_subject.add(j)
        return ret, total_subject_object_dis

    def get_imgs(self, page_no: int):  # @许瑞
        records, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
        return [
            {
                "bbox": record["all"],
                "img_body_bbox": record["subject_body"],
                "img_caption_bbox": record.get("object_body", None),
            }
            for record in records
        ]

    def get_tables(
        self, page_no: int
    ) -> list:  # 3个坐标, caption, table主体,table-note
        with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
        with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
        ret = []
        N, M = len(with_captions), len(with_footnotes)
        assert N == M
        for i in range(N):
            record = {
                "table_caption_bbox": with_captions[i].get("object_body", None),
                "table_body_bbox": with_captions[i]["subject_body"],
                "table_footnote_bbox": with_footnotes[i].get("object_body", None),
            }

            x0 = min(with_captions[i]["all"][0], with_footnotes[i]["all"][0])
            y0 = min(with_captions[i]["all"][1], with_footnotes[i]["all"][1])
            x1 = max(with_captions[i]["all"][2], with_footnotes[i]["all"][2])
            y1 = max(with_captions[i]["all"][3], with_footnotes[i]["all"][3])
            record["bbox"] = [x0, y0, x1, y1]
            ret.append(record)
        return ret
338
339

    def get_equations(self, page_no: int) -> list:  # 有坐标,也有字
kernel.h@qq.com's avatar
kernel.h@qq.com committed
340
        return inline_equations, interline_equations  # @凯文
341
342
343
344
345
346
347
348
349
350
351

    def get_discarded(self, page_no: int) -> list:  # 自研模型,只有坐标
        pass  # @凯文

    def get_text_blocks(self, page_no: int) -> list:  # 自研模型搞的,只有坐标,没有字
        pass  # @凯文

    def get_title_blocks(self, page_no: int) -> list:  # 自研模型,只有坐标,没字
        pass  # @凯文

    def get_ocr_text(self, page_no: int) -> list:  # paddle 搞的,有字也有坐标
kernel.h@qq.com's avatar
kernel.h@qq.com committed
352
        pass  # @小蒙
353
354
355
356
357

    def get_ocr_spans(self, page_no: int) -> list:
        pass  # @小蒙


许瑞's avatar
许瑞 committed
358
if __name__ == "__main__":
359
    drw = DiskReaderWriter(r"D:/project/20231108code-clean")
许瑞's avatar
许瑞 committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    if 0:
        pdf_file_path = r"linshixuqiu\19983-00.pdf"
        model_file_path = r"linshixuqiu\19983-00_new.json"
        pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
        model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
        model_list = json.loads(model_json_txt)
        write_path = r"D:\project\20231108code-clean\linshixuqiu\19983-00"
        img_bucket_path = "imgs"
        img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
        pdf_docs = fitz.open("pdf", pdf_bytes)
        magic_model = MagicModel(model_list, pdf_docs)

    if 1:
        model_list = json.loads(
            drw.read("/opt/data/pdf/20240418/j.chroma.2009.03.042.json")
        )
        pdf_bytes = drw.read(
            "/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf", AbsReaderWriter.MODE_BIN
        )
        pdf_docs = fitz.open("pdf", pdf_bytes)
        magic_model = MagicModel(model_list, pdf_docs)
        for i in range(7):
            print(magic_model.get_imgs(i))