test_e2e.py 13.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
# Copyright (c) Opendatalab. All rights reserved.
import copy
import json
import os
from pathlib import Path

from cryptography.hazmat.backends.openssl import backend
from loguru import logger

from mineru.cli.common import (
    convert_pdf_bytes_to_bytes_by_pypdfium2,
    prepare_env,
    read_fn,
)
from mineru.data.data_reader_writer import FileBasedDataWriter
from mineru.utils.draw_bbox import draw_layout_bbox, draw_span_bbox
from mineru.utils.enum_class import MakeMode
from mineru.backend.vlm.vlm_analyze import doc_analyze as vlm_doc_analyze
from mineru.backend.pipeline.pipeline_analyze import doc_analyze as pipeline_doc_analyze
from mineru.backend.pipeline.pipeline_middle_json_mkcontent import (
    union_make as pipeline_union_make,
)
from mineru.backend.pipeline.model_json_to_middle_json import (
    result_to_middle_json as pipeline_result_to_middle_json,
)
from mineru.backend.vlm.vlm_middle_json_mkcontent import union_make as vlm_union_make
from mineru.utils.models_download_utils import auto_download_and_get_model_root_path


class TestE2E:

    def test_pipeline_with_two_config(self):
        def do_parse(
            output_dir,  # Output directory for storing parsing results
            pdf_file_names: list[str],  # List of PDF file names to be parsed
            pdf_bytes_list: list[bytes],  # List of PDF bytes to be parsed
            p_lang_list: list[
                str
            ],  # List of languages for each PDF, default is 'ch' (Chinese)
            parse_method="auto",  # The method for parsing PDF, default is 'auto'
            formula_enable=True,  # Enable formula parsing
            table_enable=True,  # Enable table parsing
            f_draw_layout_bbox=True,  # Whether to draw layout bounding boxes
            f_draw_span_bbox=True,  # Whether to draw span bounding boxes
            f_dump_md=True,  # Whether to dump markdown files
            f_dump_middle_json=True,  # Whether to dump middle JSON files
            f_dump_model_output=True,  # Whether to dump model output files
            f_dump_orig_pdf=True,  # Whether to dump original PDF files
            f_dump_content_list=True,  # Whether to dump content list files
            f_make_md_mode=MakeMode.MM_MD,  # The mode for making markdown content, default is MM_MD
            start_page_id=0,  # Start page ID for parsing, default is 0
            end_page_id=None,  # End page ID for parsing, default is None (parse all pages until the end of the document)
        ):
            for idx, pdf_bytes in enumerate(pdf_bytes_list):
                new_pdf_bytes = convert_pdf_bytes_to_bytes_by_pypdfium2(
                    pdf_bytes, start_page_id, end_page_id
                )
                pdf_bytes_list[idx] = new_pdf_bytes

            (
                infer_results,
                all_image_lists,
                all_pdf_docs,
                lang_list,
                ocr_enabled_list,
            ) = pipeline_doc_analyze(
                pdf_bytes_list,
                p_lang_list,
                parse_method=parse_method,
                formula_enable=formula_enable,
                table_enable=table_enable,
            )

            for idx, model_list in enumerate(infer_results):
                model_json = copy.deepcopy(model_list)
                pdf_file_name = pdf_file_names[idx]
                local_image_dir, local_md_dir = prepare_env(
                    output_dir, pdf_file_name, parse_method
                )
                image_writer, md_writer = FileBasedDataWriter(
                    local_image_dir
                ), FileBasedDataWriter(local_md_dir)

                images_list = all_image_lists[idx]
                pdf_doc = all_pdf_docs[idx]
                _lang = lang_list[idx]
                _ocr_enable = ocr_enabled_list[idx]
                middle_json = pipeline_result_to_middle_json(
                    model_list,
                    images_list,
                    pdf_doc,
                    image_writer,
                    _lang,
                    _ocr_enable,
                    formula_enable,
                )

                pdf_info = middle_json["pdf_info"]

                pdf_bytes = pdf_bytes_list[idx]
                if f_draw_layout_bbox:
                    draw_layout_bbox(
                        pdf_info,
                        pdf_bytes,
                        local_md_dir,
                        f"{pdf_file_name}_layout.pdf",
                    )

                if f_draw_span_bbox:
                    draw_span_bbox(
                        pdf_info,
                        pdf_bytes,
                        local_md_dir,
                        f"{pdf_file_name}_span.pdf",
                    )

                if f_dump_orig_pdf:
                    md_writer.write(
                        f"{pdf_file_name}_origin.pdf",
                        pdf_bytes,
                    )

                if f_dump_md:
                    image_dir = str(os.path.basename(local_image_dir))
                    md_content_str = pipeline_union_make(
                        pdf_info, f_make_md_mode, image_dir
                    )
                    md_writer.write_string(
                        f"{pdf_file_name}.md",
                        md_content_str,
                    )

                if f_dump_content_list:
                    image_dir = str(os.path.basename(local_image_dir))
                    content_list = pipeline_union_make(
                        pdf_info, MakeMode.CONTENT_LIST, image_dir
                    )
                    md_writer.write_string(
                        f"{pdf_file_name}_content_list.json",
                        json.dumps(content_list, ensure_ascii=False, indent=4),
                    )

                if f_dump_middle_json:
                    md_writer.write_string(
                        f"{pdf_file_name}_middle.json",
                        json.dumps(middle_json, ensure_ascii=False, indent=4),
                    )

                if f_dump_model_output:
                    md_writer.write_string(
                        f"{pdf_file_name}_model.json",
                        json.dumps(model_json, ensure_ascii=False, indent=4),
                    )

                logger.info(f"local output dir is {local_md_dir}")

        def parse_doc(
            path_list: list[Path],
            output_dir,
            lang="ch",
            method="auto",
            start_page_id=0,
            end_page_id=None,
        ):
            file_name_list = []
            pdf_bytes_list = []
            lang_list = []
            for path in path_list:
                file_name = str(Path(path).stem)
                pdf_bytes = read_fn(path)
                file_name_list.append(file_name)
                pdf_bytes_list.append(pdf_bytes)
                lang_list.append(lang)
            # 运行两次 do_parse,分别是开启公式和表格解析和不开启
            do_parse(
                output_dir=output_dir,
                pdf_file_names=file_name_list,
                pdf_bytes_list=pdf_bytes_list,
                p_lang_list=lang_list,
                parse_method=method,
                start_page_id=start_page_id,
                end_page_id=end_page_id,
            )
            do_parse(
                output_dir=output_dir,
                pdf_file_names=file_name_list,
                pdf_bytes_list=pdf_bytes_list,
                p_lang_list=lang_list,
                parse_method=method,
                table_enable=False,
                formula_enable=False,
                start_page_id=start_page_id,
                end_page_id=end_page_id,
            )

        __dir__ = os.path.dirname(os.path.abspath(__file__))
        pdf_files_dir = os.path.join(__dir__, "pdfs")
        output_dir = os.path.join(__dir__, "output")
        pdf_suffixes = [".pdf"]
        image_suffixes = [".png", ".jpeg", ".jpg"]

        doc_path_list = []
        for doc_path in Path(pdf_files_dir).glob("*"):
            if doc_path.suffix in pdf_suffixes + image_suffixes:
                doc_path_list.append(doc_path)

        os.environ["MINERU_MODEL_SOURCE"] = "modelscope"
        parse_doc(doc_path_list, output_dir)

    def test_vlm_transformers_with_default_config(self):
        def do_parse(
            output_dir,  # Output directory for storing parsing results
            pdf_file_names: list[str],  # List of PDF file names to be parsed
            pdf_bytes_list: list[bytes],  # List of PDF bytes to be parsed
            server_url=None,  # Server URL for vlm-sglang-client backend
            f_draw_layout_bbox=True,  # Whether to draw layout bounding boxes
            f_dump_md=True,  # Whether to dump markdown files
            f_dump_middle_json=True,  # Whether to dump middle JSON files
            f_dump_model_output=True,  # Whether to dump model output files
            f_dump_orig_pdf=True,  # Whether to dump original PDF files
            f_dump_content_list=True,  # Whether to dump content list files
            f_make_md_mode=MakeMode.MM_MD,  # The mode for making markdown content, default is MM_MD
            start_page_id=0,  # Start page ID for parsing, default is 0
            end_page_id=None,  # End page ID for parsing, default is None (parse all pages until the end of the document)
        ):
            backend = "transformers"
            f_draw_span_bbox = False
            parse_method = "vlm"
            for idx, pdf_bytes in enumerate(pdf_bytes_list):
                pdf_file_name = pdf_file_names[idx]
                pdf_bytes = convert_pdf_bytes_to_bytes_by_pypdfium2(
                    pdf_bytes, start_page_id, end_page_id
                )
                local_image_dir, local_md_dir = prepare_env(
                    output_dir, pdf_file_name, parse_method
                )
                image_writer, md_writer = FileBasedDataWriter(
                    local_image_dir
                ), FileBasedDataWriter(local_md_dir)
                middle_json, infer_result = vlm_doc_analyze(
                    pdf_bytes,
                    image_writer=image_writer,
                    backend=backend,
                    server_url=server_url,
                )

                pdf_info = middle_json["pdf_info"]

                if f_draw_layout_bbox:
                    draw_layout_bbox(
                        pdf_info, pdf_bytes, local_md_dir, f"{pdf_file_name}_layout.pdf"
                    )

                if f_draw_span_bbox:
                    draw_span_bbox(
                        pdf_info, pdf_bytes, local_md_dir, f"{pdf_file_name}_span.pdf"
                    )

                if f_dump_orig_pdf:
                    md_writer.write(
                        f"{pdf_file_name}_origin.pdf",
                        pdf_bytes,
                    )

                if f_dump_md:
                    image_dir = str(os.path.basename(local_image_dir))
                    md_content_str = vlm_union_make(pdf_info, f_make_md_mode, image_dir)
                    md_writer.write_string(
                        f"{pdf_file_name}.md",
                        md_content_str,
                    )

                if f_dump_content_list:
                    image_dir = str(os.path.basename(local_image_dir))
                    content_list = vlm_union_make(
                        pdf_info, MakeMode.CONTENT_LIST, image_dir
                    )
                    md_writer.write_string(
                        f"{pdf_file_name}_content_list.json",
                        json.dumps(content_list, ensure_ascii=False, indent=4),
                    )

                if f_dump_middle_json:
                    md_writer.write_string(
                        f"{pdf_file_name}_middle.json",
                        json.dumps(middle_json, ensure_ascii=False, indent=4),
                    )

                if f_dump_model_output:
                    model_output = ("\n" + "-" * 50 + "\n").join(infer_result)
                    md_writer.write_string(
                        f"{pdf_file_name}_model_output.txt",
                        model_output,
                    )

                logger.info(f"local output dir is {local_md_dir}")

        def parse_doc(
            path_list: list[Path],
            output_dir,
            lang="ch",
            server_url=None,
            start_page_id=0,
            end_page_id=None,
        ):
            file_name_list = []
            pdf_bytes_list = []
            lang_list = []
            for path in path_list:
                file_name = str(Path(path).stem)
                pdf_bytes = read_fn(path)
                file_name_list.append(file_name)
                pdf_bytes_list.append(pdf_bytes)
                lang_list.append(lang)
            do_parse(
                output_dir=output_dir,
                pdf_file_names=file_name_list,
                pdf_bytes_list=pdf_bytes_list,
                server_url=server_url,
                start_page_id=start_page_id,
                end_page_id=end_page_id,
            )

        __dir__ = os.path.dirname(os.path.abspath(__file__))
        pdf_files_dir = os.path.join(__dir__, "pdfs")
        output_dir = os.path.join(__dir__, "output")
        pdf_suffixes = [".pdf"]
        image_suffixes = [".png", ".jpeg", ".jpg"]

        doc_path_list = []
        for doc_path in Path(pdf_files_dir).glob("*"):
            if doc_path.suffix in pdf_suffixes + image_suffixes:
                doc_path_list.append(doc_path)

        os.environ["MINERU_MODEL_SOURCE"] = "modelscope"
        parse_doc(doc_path_list, output_dir)