README.md 8.49 KB
Newer Older
赵小蒙's avatar
赵小蒙 committed
1
2
<div id="top"></div>
<div align="center">
赵小蒙's avatar
赵小蒙 committed
3

赵小蒙's avatar
赵小蒙 committed
4
5
6
[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
myhloli's avatar
myhloli committed
7
8
9
10
11
12
13
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![PyPI version](https://badge.fury.io/py/magic-pdf.svg)](https://badge.fury.io/py/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf)



赵小蒙's avatar
赵小蒙 committed
14
15
16
17
18
19
20
21

[English](README.md) | [简体中文](README_zh-CN.md)

</div>

<div align="center">

</div>
赵小蒙's avatar
赵小蒙 committed
22

赵小蒙's avatar
赵小蒙 committed
23
24
# MinerU 

赵小蒙's avatar
赵小蒙 committed
25

赵小蒙's avatar
赵小蒙 committed
26
27
## Introduction

赵小蒙's avatar
赵小蒙 committed
28
MinerU is a one-stop, open-source, high-quality data extraction tool, includes the following primary features:
赵小蒙's avatar
赵小蒙 committed
29

赵小蒙's avatar
赵小蒙 committed
30
31
- [Magic-PDF](#Magic-PDF)  PDF Document Extraction  
- [Magic-Doc](#Magic-Doc)  Webpage & E-book Extraction
赵小蒙's avatar
赵小蒙 committed
32

赵小蒙's avatar
赵小蒙 committed
33

赵小蒙's avatar
赵小蒙 committed
34
# Magic-PDF
赵小蒙's avatar
赵小蒙 committed
35

赵小蒙's avatar
赵小蒙 committed
36

赵小蒙's avatar
赵小蒙 committed
37
## Introduction
赵小蒙's avatar
赵小蒙 committed
38

赵小蒙's avatar
赵小蒙 committed
39
Magic-PDF is a tool designed to convert PDF documents into Markdown format, capable of processing files stored locally or on object storage supporting S3 protocol.
赵小蒙's avatar
赵小蒙 committed
40

赵小蒙's avatar
赵小蒙 committed
41
Key features include:
赵小蒙's avatar
赵小蒙 committed
42

赵小蒙's avatar
赵小蒙 committed
43
44
45
- Support for multiple front-end model inputs
- Removal of headers, footers, footnotes, and page numbers
- Human-readable layout formatting
赵小蒙's avatar
赵小蒙 committed
46
- Retains the original document's structure and formatting, including headings, paragraphs, lists, and more
赵小蒙's avatar
赵小蒙 committed
47
48
49
50
51
- Extraction and display of images and tables within markdown
- Conversion of equations into LaTeX format
- Automatic detection and conversion of garbled PDFs
- Compatibility with CPU and GPU environments
- Available for Windows, Linux, and macOS platforms
赵小蒙's avatar
赵小蒙 committed
52

myhloli's avatar
myhloli committed
53

赵小蒙's avatar
赵小蒙 committed
54
https://github.com/opendatalab/MinerU/assets/11393164/618937cb-dc6a-4646-b433-e3131a5f4070
myhloli's avatar
myhloli committed
55
56
57



赵小蒙's avatar
赵小蒙 committed
58
59
60
61
## Project Panorama

![Project Panorama](docs/images/project_panorama_en.png)

赵小蒙's avatar
赵小蒙 committed
62

63
64
65
66
## Flowchart

![Flowchart](docs/images/flowchart_en.png)

drunkpig's avatar
drunkpig committed
67
### Dependency repositorys
68

drunkpig's avatar
drunkpig committed
69
- [PDF-Extract-Kit : A Comprehensive Toolkit for High-Quality PDF Content Extraction](https://github.com/opendatalab/PDF-Extract-Kit) 🚀🚀🚀
赵小蒙's avatar
赵小蒙 committed
70

赵小蒙's avatar
赵小蒙 committed
71
## Getting Started
赵小蒙's avatar
赵小蒙 committed
72

赵小蒙's avatar
赵小蒙 committed
73
### Requirements
赵小蒙's avatar
赵小蒙 committed
74

赵小蒙's avatar
赵小蒙 committed
75
- Python >= 3.9
赵小蒙's avatar
赵小蒙 committed
76

77
78
79
80
81
82
Using a virtual environment is recommended to avoid potential dependency conflicts; both venv and conda are suitable. 
For example:
```bash
conda create -n MinerU python=3.10
conda activate MinerU
```
83

84
### Installation and Configuration
赵小蒙's avatar
赵小蒙 committed
85

赵小蒙's avatar
赵小蒙 committed
86
#### 1. Install Magic-PDF
赵小蒙's avatar
赵小蒙 committed
87

88
89
90
91
92
Install the full-feature package with pip:
>Note: The pip-installed package supports CPU-only and is ideal for quick tests.
>
>For CUDA/MPS acceleration in production, see [Acceleration Using CUDA or MPS](#4-Acceleration-Using-CUDA-or-MPS).

93
```bash
94
pip install magic-pdf[full-cpu]
95
```
96
97
98
99
The full-feature package depends on detectron2, which requires a compilation installation.   
If you need to compile it yourself, please refer to https://github.com/facebookresearch/detectron2/issues/5114  
Alternatively, you can directly use our precompiled whl package (limited to Python 3.10):

100
101
```bash
pip install detectron2 --extra-index-url https://myhloli.github.io/wheels/
赵小蒙's avatar
赵小蒙 committed
102
103
104
```


105
106
#### 2. Downloading model weights files

myhloli's avatar
myhloli committed
107
For detailed references, please see below [how_to_download_models](docs/how_to_download_models_en.md)
108
109
110
111
112

After downloading the model weights, move the 'models' directory to a directory on a larger disk space, preferably an SSD.


#### 3. Copy the Configuration File and Make Configurations
113
You can get the [magic-pdf.template.json](magic-pdf.template.json) file in the repository root directory.
赵小蒙's avatar
赵小蒙 committed
114
```bash
赵小蒙's avatar
赵小蒙 committed
115
cp magic-pdf.template.json ~/magic-pdf.json
116
117
118
119
120
121
122
123
124
125
```
In magic-pdf.json, configure "models-dir" to point to the directory where the model weights files are located.

```json
{
  "models-dir": "/tmp/models"
}
```


126
127
#### 4. Acceleration Using CUDA or MPS
If you have an available Nvidia GPU or are using a Mac with Apple Silicon, you can leverage acceleration with CUDA or MPS respectively.
128
129
##### CUDA

myhloli's avatar
myhloli committed
130
131
You need to install the corresponding PyTorch version according to your CUDA version.  
This example installs the CUDA 11.8 version.More information https://pytorch.org/get-started/locally/  
132
133
134
```bash
pip install --force-reinstall torch==2.3.1 torchvision==0.18.1 --index-url https://download.pytorch.org/whl/cu118
```
myhloli's avatar
myhloli committed
135
Also, you need to modify the value of "device-mode" in the configuration file magic-pdf.json.  
136
137
138
139
140
141
142
143
```json
{
  "device-mode":"cuda"
}
```

##### MPS

myhloli's avatar
myhloli committed
144
145
For macOS users with M-series chip devices, you can use MPS for inference acceleration.  
You also need to modify the value of "device-mode" in the configuration file magic-pdf.json.  
146
147
148
149
150
151
```json
{
  "device-mode":"mps"
}
```

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

### Usage

#### 1.Usage via Command Line

###### simple

```bash
magic-pdf pdf-command --pdf "pdf_path" --inside_model true
```
After the program has finished, you can find the generated markdown files under the directory "/tmp/magic-pdf".  
You can find the corresponding xxx_model.json file in the markdown directory.   
If you intend to do secondary development on the post-processing pipeline, you can use the command:  
```bash
magic-pdf pdf-command --pdf "pdf_path" --model "model_json_path"
```
In this way, you won't need to re-run the model data, making debugging more convenient.


###### more 

```bash
magic-pdf --help
```


#### 2. Usage via Api
赵小蒙's avatar
赵小蒙 committed
179
180
181
182
183

###### Local
```python
image_writer = DiskReaderWriter(local_image_dir)
image_dir = str(os.path.basename(local_image_dir))
184
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
185
186
187
188
189
190
191
192
193
194
195
196
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

###### Object Storage
```python
s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint)
image_dir = "s3://img_bucket/"
s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir)
pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN)
197
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
198
199
200
201
202
203
pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli)
pipe.pipe_classify()
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

204
Demo can be referred to [demo.py](demo/demo.py)
赵小蒙's avatar
赵小蒙 committed
205

赵小蒙's avatar
赵小蒙 committed
206

赵小蒙's avatar
赵小蒙 committed
207
208
# Magic-Doc

赵小蒙's avatar
赵小蒙 committed
209

赵小蒙's avatar
赵小蒙 committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
## Introduction

Magic-Doc is a tool designed to convert web pages or multi-format e-books into markdown format.

Key Features Include:

- Web Page Extraction
  - Cross-modal precise parsing of text, images, tables, and formula information.

- E-Book Document Extraction
  - Supports various document formats including epub, mobi, with full adaptation for text and images.

- Language Type Identification
  - Accurate recognition of 176 languages.

https://github.com/opendatalab/MinerU/assets/11393164/a5a650e9-f4c0-463e-acc3-960967f1a1ca



https://github.com/opendatalab/MinerU/assets/11393164/0f4a6fe9-6cca-4113-9fdc-a537749d764d



https://github.com/opendatalab/MinerU/assets/11393164/20438a02-ce6c-4af8-9dde-d722a4e825b2



赵小蒙's avatar
赵小蒙 committed
237

赵小蒙's avatar
赵小蒙 committed
238
239
## Project Repository

赵小蒙's avatar
赵小蒙 committed
240
- [Magic-Doc](https://github.com/InternLM/magic-doc)
赵小蒙's avatar
赵小蒙 committed
241
  Outstanding Webpage and E-book Extraction Tool
赵小蒙's avatar
赵小蒙 committed
242
243


赵小蒙's avatar
赵小蒙 committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# All Thanks To Our Contributors

<a href="https://github.com/magicpdf/Magic-PDF/graphs/contributors">
  <img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>


# License Information

[LICENSE.md](LICENSE.md)

The project currently leverages PyMuPDF to deliver advanced functionalities; however, its adherence to the AGPL license may impose limitations on certain use cases. In upcoming iterations, we intend to explore and transition to a more permissively licensed PDF processing library to enhance user-friendliness and flexibility.


# Acknowledgments

- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
赵小蒙's avatar
赵小蒙 committed
262
263
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
赵小蒙's avatar
赵小蒙 committed
264
265


赵小蒙's avatar
赵小蒙 committed
266
267
268
269
270
271
272
273
274
275
276
277
278
# Citation

```bibtex
@misc{2024mineru,
    title={MinerU: A One-stop, Open-source, High-quality Data Extraction Tool},
    author={MinerU Contributors},
    howpublished = {\url{https://github.com/opendatalab/MinerU}},
    year={2024}
}
```


# Star History
赵小蒙's avatar
赵小蒙 committed
279

赵小蒙's avatar
赵小蒙 committed
280
281
282
283
284
285
<a>
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
 </picture>
myhloli's avatar
myhloli committed
286
</a>