para_split.py 7.56 KB
Newer Older
xuchao's avatar
xuchao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from sklearn.cluster import DBSCAN
import numpy as np
from loguru import logger

from magic_pdf.libs.boxbase import _is_in


LINE_STOP_FLAG = ['.', '!', '?', '。', '!', '?',":", ":", ")", ")", ";"]
INLINE_EQUATION = 'inline_equation'
INTER_EQUATION = "displayed_equation"
TEXT = "text"

def __add_line_period(blocks, layout_bboxes):
    """
    为每行添加句号
    如果这个行
    1. 以行内公式结尾,但没有任何标点符号,此时加个句号,认为他就是段落结尾。
    """
    for block in blocks:
        for line in block['lines']:
            last_span = line['spans'][-1]
            span_type = last_span['type']
            if span_type in [TEXT, INLINE_EQUATION]:
                span_content = last_span['content'].strip()
                if span_type==INLINE_EQUATION and span_content[-1] not in LINE_STOP_FLAG:
                    if span_type in [INLINE_EQUATION, INTER_EQUATION]:
                        last_span['content'] = span_content + '.'



def __valign_lines(blocks, layout_bboxes):
    """
    对齐行的左侧和右侧。
    扫描行的左侧和右侧,如果x0, x1差距不超过3就强行对齐到所处layout的左右两侧(和layout有一段距离)。
    3是个经验值,TODO,计算得来
    
    """
    
    min_distance = 3
    min_sample = 2
    
    for layout_box in layout_bboxes:
        blocks_in_layoutbox = [b for b in blocks if _is_in(b['bbox'], layout_box['layout_bbox'])]
        if len(blocks_in_layoutbox)==0:
            continue
        
        x0_lst = np.array([[line['bbox'][0], 0] for block in blocks_in_layoutbox for line in block['lines']])
        x1_lst = np.array([[line['bbox'][2], 0] for block in blocks_in_layoutbox for line in block['lines']])
        x0_clusters = DBSCAN(eps=min_distance, min_samples=min_sample).fit(x0_lst)
        x1_clusters = DBSCAN(eps=min_distance, min_samples=min_sample).fit(x1_lst)
        x0_uniq_label = np.unique(x0_clusters.labels_)
        x1_uniq_label = np.unique(x1_clusters.labels_)
        
        x0_2_new_val = {} # 存储旧值对应的新值映射
        x1_2_new_val = {}
        for label in x0_uniq_label:
            if label==-1:
                continue
            x0_index_of_label = np.where(x0_clusters.labels_==label)
            x0_raw_val = x0_lst[x0_index_of_label][:,0]
            x0_new_val = np.min(x0_lst[x0_index_of_label][:,0])
            x0_2_new_val.update({idx: x0_new_val for idx in x0_raw_val})
        for label in x1_uniq_label:
            if label==-1:
                continue
            x1_index_of_label = np.where(x1_clusters.labels_==label)
            x1_raw_val = x1_lst[x1_index_of_label][:,0]
            x1_new_val = np.max(x1_lst[x1_index_of_label][:,0])
            x1_2_new_val.update({idx: x1_new_val for idx in x1_raw_val})
        
        for block in blocks_in_layoutbox:
            for line in block['lines']:
                x0, x1 = line['bbox'][0], line['bbox'][2]
                if x0 in x0_2_new_val:
                    line['bbox'][0] = int(x0_2_new_val[x0])

                if x1 in x1_2_new_val:
                    line['bbox'][2] = int(x1_2_new_val[x1])
            # 其余对不齐的保持不动
            
        # 由于修改了block里的line长度,现在需要重新计算block的bbox
        for block in blocks_in_layoutbox:
            block['bbox'] = [min([line['bbox'][0] for line in block['lines']]), 
                            min([line['bbox'][1] for line in block['lines']]), 
                            max([line['bbox'][2] for line in block['lines']]), 
                            max([line['bbox'][3] for line in block['lines']])]


def __common_pre_proc(blocks, layout_bboxes):
    """
    不分语言的,对文本进行预处理
    """
    __add_line_period(blocks, layout_bboxes)
    __valign_lines(blocks, layout_bboxes)
    

def __pre_proc_zh_blocks(blocks, layout_bboxes):
    """
    对中文文本进行分段预处理
    """
    pass


def __pre_proc_en_blocks(blocks, layout_bboxes):
    """
    对英文文本进行分段预处理
    """
    pass


def __group_line_by_layout(blocks, layout_bboxes, lang="en"):
    """
    每个layout内的行进行聚合
    """
    # 因为只是一个block一行目前, 一个block就是一个段落
    lines_group = []
    
    for lyout in layout_bboxes:
        lines = [line for block in blocks if _is_in(block['bbox'], lyout['layout_bbox']) for line in block['lines']]
        lines_group.append(lines)

    return lines_group
    

def __split_para_in_layoutbox(lines_group, layout_bboxes, lang="en", char_avg_len=10):
    """
    lines_group 进行行分段——layout内部进行分段。
    1. 先计算每个group的左右边界。
    2. 然后根据行末尾特征进行分段。
        末尾特征:以句号等结束符结尾。并且距离右侧边界有一定距离。
    
    """
    def get_span_text(span):
        c = span.get('content', '')
        if len(c)==0:
            c = span.get('image-path', '')
            
        return c
    
    paras = []
    right_tail_distance = 1.5 * char_avg_len
    for lines in lines_group:
        if len(lines)==0:
            continue
        layout_right = max([line['bbox'][2] for line in lines])
        para = [] # 元素是line
        for line in lines:
            line_text = ''.join([get_span_text(span) for span in line['spans']])
            #logger.info(line_text)
            last_span_type = line['spans'][-1]['type']
            if last_span_type in [TEXT, INLINE_EQUATION]:
                last_char = line['spans'][-1]['content'][-1]
                if last_char in LINE_STOP_FLAG or line['bbox'][2] < layout_right - right_tail_distance:
                    para.append(line)
                    paras.append(para)
                    # para_text = ''.join([span['content'] for line in para for span in line['spans']])
                    # logger.info(para_text)
                    para = []
                else: 
                    para.append(line)
            else: # 其他,图片、表格、行间公式,各自占一段
                para.append(line)
                paras.append(para)
                # para_text = ''.join([get_span_text(span) for line in para for span in line['spans']])
                # logger.info(para_text)
                para = []
        if len(para)>0:
            paras.append(para)
            # para_text = ''.join([get_span_text(span) for line in para for span in line['spans']])
            # logger.info(para_text)
            para = []
                    
    return paras
            

def __do_split(blocks, layout_bboxes, lang="en"):
    """
    根据line和layout情况进行分段
    先实现一个根据行末尾特征分段的简单方法。
    """
    """
    算法思路:
    1. 扫描layout里每一行,找出来行尾距离layout有边界有一定距离的行。
    2. 从上述行中找到末尾是句号等可作为断行标志的行。
    3. 参照上述行尾特征进行分段。
    4. 图、表,目前独占一行,不考虑分段。
    """
    lines_group = __group_line_by_layout(blocks, layout_bboxes, lang) # block内分段
    layout_paras = __split_para_in_layoutbox(lines_group, layout_bboxes, lang) # block间连接分段
    
    return layout_paras
    
    
def para_split(blocks, layout_bboxes, lang="en"):
    """
    根据line和layout情况进行分段
    """
    __common_pre_proc(blocks, layout_bboxes)
    if lang=='en':
        __do_split(blocks, layout_bboxes, lang)
    elif lang=='zh':
        __do_split(blocks, layout_bboxes, lang)
    
    splited_blocks = __do_split(blocks, layout_bboxes, lang)
    
    return splited_blocks