README_Windows_CUDA_Acceleration_en_US.md 4.17 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Windows 10/11

### 1. Install CUDA and cuDNN
Required versions: CUDA 11.8 + cuDNN 8.7.0
   - CUDA 11.8: https://developer.nvidia.com/cuda-11-8-0-download-archive
   - cuDNN v8.7.0 (November 28th, 2022), for CUDA 11.x: https://developer.nvidia.com/rdp/cudnn-archive
   
### 2. Install Anaconda
   If Anaconda is already installed, you can skip this step.
   Download link: https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Windows-x86_64.exe

### 3. Create an Environment Using Conda
   Python version must be 3.10.
   ```
   conda create -n MinerU python=3.10
   conda activate MinerU
   ```

### 4. Install Applications
   ```
   pip install magic-pdf[full]==0.6.2b1 detectron2 --extra-index-url https://wheels.myhloli.com
   ```
   >❗️After installation, verify the version of `magic-pdf`:
   >  ```bash
   >  magic-pdf --version
   >  ```
   > If the version number is less than 0.6.2, please report it in the issues section.
   
### 5. Download Models
   Refer to detailed instructions on [how to download model files](how_to_download_models_en.md).  
   After downloading, move the `models` directory to an SSD with more space.
   
   >❗ After downloading the models, ensure they are complete:
   >- Check that the file sizes match the description on the website.
   >- If possible, verify the integrity using SHA256.

### 6. Configuration Before the First Run
   Obtain the configuration template file `magic-pdf.template.json` from the repository root directory.
    
   >❗️Execute the following command to copy the configuration file to your user directory, or the program will not run.
   >   
   > In Windows, user directory is "C:\Users\username"
   
   ```
     (New-Object System.Net.WebClient).DownloadFile('https://github.com/opendatalab/MinerU/raw/master/magic-pdf.template.json', 'magic-pdf.template.json')
     cp magic-pdf.template.json ~/magic-pdf.json
   ```

   Find the `magic-pdf.json` file in your user directory and configure `"models-dir"` to point to the directory where the model weights from step 5 were downloaded.
   
   > ❗️Ensure the absolute path of the model weights directory is correctly configured, or the program will fail to run due to not finding the model files.
   >    
   > In Windows, this path should include the drive letter and replace all double quotes (`"\"`) with forward slashes (`"/"`).
   >   
   > Example: If the models are placed in the root directory of drive D, the value for `model-dir` should be `"D:/models"`.
   
   ```
   {
     "models-dir": "/tmp/models"
   }
   ```

### 7. First Run
   Download a sample file from the repository and test it.
   ```
     (New-Object System.Net.WebClient).DownloadFile('https://github.com/opendatalab/MinerU/raw/master/demo/small_ocr.pdf', 'small_ocr.pdf')
     magic-pdf pdf-command --pdf small_ocr.pdf
   ```

### 8. Test CUDA Acceleration
   If your graphics card has at least 8GB of VRAM, follow these steps to test CUDA-accelerated parsing performance.
   1. **Overwrite the installation of torch and torchvision** supporting CUDA.
      ```
      pip install --force-reinstall torch==2.3.1 torchvision==0.18.1 --index-url https://download.pytorch.org/whl/cu118
      ```
      >❗️Ensure the following versions are specified in the command:
      >```
      > torch==2.3.1 torchvision==0.18.1
      >```
      >These are the highest versions we support. Installing higher versions without specifying them will cause the program to fail.
   2. **Modify the value of `"device-mode"`** in the `magic-pdf.json` configuration file located in your user directory.
     
      ```json
      {
        "device-mode": "cuda"
      }
      ```
   3. **Run the following command to test CUDA acceleration**:

      ```
      magic-pdf pdf-command --pdf small_ocr.pdf
      ```

### 9. Enable CUDA Acceleration for OCR
   >❗️This operation requires at least 16GB of VRAM on your graphics card, otherwise it will cause the program to crash or slow down.
   1. **Download paddlepaddle-gpu**, which will automatically enable OCR acceleration upon installation.
      ```
      pip install paddlepaddle-gpu==2.6.1
      ```
   2. **Run the following command to test OCR acceleration**:
      ```
      magic-pdf pdf-command --pdf small_ocr.pdf
      ```