doc_analyze_by_custom_model.py 7.96 KB
Newer Older
1
import os
2
3
import time

4
5
# 关闭paddle的信号处理
import paddle
6
import torch
icecraft's avatar
icecraft committed
7
8
from loguru import logger

9
10
11
from magic_pdf.model.batch_analyze import BatchAnalyze
from magic_pdf.model.sub_modules.model_utils import get_vram

12
13
paddle.disable_signal_handler()

14
15
16
17
18
19
20
21
22
23
os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1'  # 禁止albumentations检查更新

try:
    import torchtext

    if torchtext.__version__ >= '0.18.0':
        torchtext.disable_torchtext_deprecation_warning()
except ImportError:
    pass

24
25
import magic_pdf.model as model_config
from magic_pdf.data.dataset import Dataset
26
from magic_pdf.libs.clean_memory import clean_memory
27
28
29
30
from magic_pdf.libs.config_reader import (get_device, get_formula_config,
                                          get_layout_config,
                                          get_local_models_dir,
                                          get_table_recog_config)
31
from magic_pdf.model.model_list import MODEL
icecraft's avatar
icecraft committed
32
from magic_pdf.operators.models import InferenceResult
赵小蒙's avatar
赵小蒙 committed
33
34
35
36
37
38
39
40
41
42


def dict_compare(d1, d2):
    return d1.items() == d2.items()


def remove_duplicates_dicts(lst):
    unique_dicts = []
    for dict_item in lst:
        if not any(
43
            dict_compare(dict_item, existing_dict) for existing_dict in unique_dicts
赵小蒙's avatar
赵小蒙 committed
44
45
46
47
48
        ):
            unique_dicts.append(dict_item)
    return unique_dicts


49
50
51
52
53
54
55
56
57
class ModelSingleton:
    _instance = None
    _models = {}

    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance

58
59
60
61
62
63
64
65
66
    def get_model(
        self,
        ocr: bool,
        show_log: bool,
        lang=None,
        layout_model=None,
        formula_enable=None,
        table_enable=None,
    ):
67
        key = (ocr, show_log, lang, layout_model, formula_enable, table_enable)
68
        if key not in self._models:
69
70
71
72
73
74
75
76
            self._models[key] = custom_model_init(
                ocr=ocr,
                show_log=show_log,
                lang=lang,
                layout_model=layout_model,
                formula_enable=formula_enable,
                table_enable=table_enable,
            )
77
78
79
        return self._models[key]


80
81
82
83
84
85
86
87
def custom_model_init(
    ocr: bool = False,
    show_log: bool = False,
    lang=None,
    layout_model=None,
    formula_enable=None,
    table_enable=None,
):
88

89
90
    model = None

91
92
93
94
95
    if model_config.__model_mode__ == 'lite':
        logger.warning(
            'The Lite mode is provided for developers to conduct testing only, and the output quality is '
            'not guaranteed to be reliable.'
        )
96
        model = MODEL.Paddle
97
    elif model_config.__model_mode__ == 'full':
98
99
        model = MODEL.PEK

100
    if model_config.__use_inside_model__:
101
        model_init_start = time.time()
102
103
        if model == MODEL.Paddle:
            from magic_pdf.model.pp_structure_v2 import CustomPaddleModel
104

105
            custom_model = CustomPaddleModel(ocr=ocr, show_log=show_log, lang=lang)
106
107
        elif model == MODEL.PEK:
            from magic_pdf.model.pdf_extract_kit import CustomPEKModel
108

109
110
111
            # 从配置文件读取model-dir和device
            local_models_dir = get_local_models_dir()
            device = get_device()
112
113
114

            layout_config = get_layout_config()
            if layout_model is not None:
115
                layout_config['model'] = layout_model
116
117
118

            formula_config = get_formula_config()
            if formula_enable is not None:
119
                formula_config['enable'] = formula_enable
120

121
            table_config = get_table_recog_config()
122
            if table_enable is not None:
123
                table_config['enable'] = table_enable
124
125

            model_input = {
126
127
128
129
130
131
132
133
                'ocr': ocr,
                'show_log': show_log,
                'models_dir': local_models_dir,
                'device': device,
                'table_config': table_config,
                'layout_config': layout_config,
                'formula_config': formula_config,
                'lang': lang,
134
135
            }

136
            custom_model = CustomPEKModel(**model_input)
137
        else:
138
            logger.error('Not allow model_name!')
139
            exit(1)
140
        model_init_cost = time.time() - model_init_start
141
        logger.info(f'model init cost: {model_init_cost}')
142
    else:
143
        logger.error('use_inside_model is False, not allow to use inside model')
144
145
        exit(1)

146
147
148
    return custom_model


149
150
151
152
153
154
155
156
157
158
159
def doc_analyze(
    dataset: Dataset,
    ocr: bool = False,
    show_log: bool = False,
    start_page_id=0,
    end_page_id=None,
    lang=None,
    layout_model=None,
    formula_enable=None,
    table_enable=None,
) -> InferenceResult:
160

161
    end_page_id = end_page_id if end_page_id else len(dataset) - 1
162

163
    model_manager = ModelSingleton()
164
165
166
    custom_model = model_manager.get_model(
        ocr, show_log, lang, layout_model, formula_enable, table_enable
    )
167

168
169
170
171
172
173
174
175
176
177
    batch_analyze = False
    device = get_device()

    npu_support = False
    if str(device).startswith("npu"):
        import torch_npu
        if torch_npu.npu.is_available():
            npu_support = True

    if torch.cuda.is_available() and device != 'cpu' or npu_support:
178
        gpu_memory = int(os.getenv("VIRTUAL_VRAM_SIZE", round(get_vram(device))))
179
        if gpu_memory is not None and gpu_memory >= 8:
180

181
            if 8 <= gpu_memory < 10:
182
                batch_ratio = 2
183
            elif 10 <= gpu_memory <= 12:
184
                batch_ratio = 4
185
            elif 12 < gpu_memory <= 20:
186
                batch_ratio = 8
187
            elif 20 < gpu_memory <= 32:
188
189
190
191
                batch_ratio = 16
            else:
                batch_ratio = 32

192
193
194
195
196
            if batch_ratio >= 1:
                logger.info(f'gpu_memory: {gpu_memory} GB, batch_ratio: {batch_ratio}')
                batch_model = BatchAnalyze(model=custom_model, batch_ratio=batch_ratio)
                batch_analyze = True

197
    model_json = []
198
    doc_analyze_start = time.time()
199

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    if batch_analyze:
        # batch analyze
        images = []
        for index in range(len(dataset)):
            if start_page_id <= index <= end_page_id:
                page_data = dataset.get_page(index)
                img_dict = page_data.get_image()
                images.append(img_dict['img'])
        analyze_result = batch_model(images)

        for index in range(len(dataset)):
            page_data = dataset.get_page(index)
            img_dict = page_data.get_image()
            page_width = img_dict['width']
            page_height = img_dict['height']
            if start_page_id <= index <= end_page_id:
                result = analyze_result.pop(0)
            else:
                result = []

            page_info = {'page_no': index, 'height': page_height, 'width': page_width}
            page_dict = {'layout_dets': result, 'page_info': page_info}
            model_json.append(page_dict)
223

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    else:
        # single analyze

        for index in range(len(dataset)):
            page_data = dataset.get_page(index)
            img_dict = page_data.get_image()
            img = img_dict['img']
            page_width = img_dict['width']
            page_height = img_dict['height']
            if start_page_id <= index <= end_page_id:
                page_start = time.time()
                result = custom_model(img)
                logger.info(f'-----page_id : {index}, page total time: {round(time.time() - page_start, 2)}-----')
            else:
                result = []

            page_info = {'page_no': index, 'height': page_height, 'width': page_width}
            page_dict = {'layout_dets': result, 'page_info': page_info}
            model_json.append(page_dict)
243

244
    gc_start = time.time()
245
    clean_memory(get_device())
246
    gc_time = round(time.time() - gc_start, 2)
247
    logger.info(f'gc time: {gc_time}')
248

249
    doc_analyze_time = round(time.time() - doc_analyze_start, 2)
250
251
252
253
254
    doc_analyze_speed = round((end_page_id + 1 - start_page_id) / doc_analyze_time, 2)
    logger.info(
        f'doc analyze time: {round(time.time() - doc_analyze_start, 2)},'
        f' speed: {doc_analyze_speed} pages/second'
    )
赵小蒙's avatar
update:  
赵小蒙 committed
255

256
    return InferenceResult(model_json, dataset)