README_zh-CN.md.bak 15.9 KB
Newer Older
drunkpig's avatar
drunkpig committed
1
2
<div align="center" xmlns="http://www.w3.org/1999/html">
<!-- logo -->
xuchao's avatar
xuchao committed
3
<p align="center">
drunkpig's avatar
drunkpig committed
4
  <img src="docs/images/MinerU-logo.png" width="300px" style="vertical-align:middle;">
xuchao's avatar
xuchao committed
5
</p>
drunkpig's avatar
drunkpig committed
6
7

<!-- icon -->
xuchao's avatar
xuchao committed
8
9
10
11
12
13
14
15
16
17

[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![PyPI version](https://badge.fury.io/py/magic-pdf.svg)](https://badge.fury.io/py/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf)
<a href="https://trendshift.io/repositories/11174" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11174" alt="opendatalab%2FMinerU | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>

drunkpig's avatar
drunkpig committed
18
<!-- language -->
xuchao's avatar
xuchao committed
19

drunkpig's avatar
drunkpig committed
20
21
22
[English](README.md) | [简体中文](README_zh-CN.md)

<!-- hot link -->
xuchao's avatar
xuchao committed
23
24
25
26
27

<p align="center">
<a href="https://github.com/opendatalab/PDF-Extract-Kit">PDF-Extract-Kit: 高质量PDF解析工具箱</a>🔥🔥🔥
</p>

drunkpig's avatar
drunkpig committed
28
29
<!-- join us -->

xuchao's avatar
xuchao committed
30
<p align="center">
drunkpig's avatar
drunkpig committed
31
    👋 join us on <a href="https://discord.gg/Tdedn9GTXq" target="_blank">Discord</a> and <a href="https://cdn.vansin.top/internlm/mineru.jpg" target="_blank">WeChat</a>
xuchao's avatar
xuchao committed
32
33
</p>

drunkpig's avatar
drunkpig committed
34
</div>
xuchao's avatar
xuchao committed
35

drunkpig's avatar
drunkpig committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# 更新记录

- 2024/08/09 0.7.0b1发布,简化安装步骤提升易用性,加入表格识别功能
- 2024/08/01 0.6.2b1发布,优化了依赖冲突问题和安装文档
- 2024/07/05 首次开源

<!-- TABLE OF CONTENT -->

<details open="open">
  <summary><h2 style="display: inline-block">文档目录</h2></summary>
  <ol>
    <li>
      <a href="#mineru">MinerU</a>
      <ul>
        <li><a href="#项目简介">项目简介</a></li>
        <li><a href="#主要功能">主要功能</a></li>
        <li><a href="#快速开始">快速开始</a>
            <ul>
            <li><a href="#在线体验">在线体验</a></li>
            <li><a href="#使用CPU快速体验">使用CPU快速体验</a></li>
            <li><a href="#使用GPU">使用GPU</a></li>
            </ul>
        </li>
        <li><a href="#使用">使用方式</a>
            <ul>
            <li><a href="#命令行">命令行</a></li>
            <li><a href="#api">API</a></li>
            <li><a href="#二次开发">二次开发</a></li>
            </ul>
        </li>
      </ul>
    </li>
    <li><a href="#todo">TODO</a></li>
    <li><a href="#known-issues">Known Issues</a></li>
    <li><a href="#faq">FAQ</a></li>
    <li><a href="#all-thanks-to-our-contributors">Contributors</a></li>
    <li><a href="#license-information">License Information</a></li>
    <li><a href="#acknowledgments">Acknowledgements</a></li>
    <li><a href="#citation">Citation</a></li>
    <li><a href="#star-history">Star History</a></li>
    <li><a href="#magic-doc">magic-doc快速提取PPT/DOC/PDF</a></li>
    <li><a href="#magic-html">magic-html提取混合网页内容</a></li>
    <li><a href="#links">Links</a></li>
  </ol>
</details>

# MinerU

## 项目简介

MinerU是一款将PDF转化为机器可读格式的工具(如markdown、json),可以很方便地抽取为任意格式。
MinerU诞生于[书生-浦语](https://github.com/InternLM/InternLM)的预训练过程中,我们将会集中精力解决科技文献中的符号转化问题,希望在大模型时代为科技发展做出贡献。
相比国内外知名商用产品MinerU还很年轻,如果遇到问题或者结果不及预期请到[issue](https://github.com/opendatalab/MinerU/issues)提交问题,同时**附上相关PDF**。
xuchao's avatar
xuchao committed
89
90
91

https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c

drunkpig's avatar
drunkpig committed
92
## 主要功能
xuchao's avatar
xuchao committed
93

drunkpig's avatar
drunkpig committed
94
95
96
97
98
99
100
101
102
- 删除页眉、页脚、脚注、页码等元素,保持语义连贯
- 对多栏输出符合人类阅读顺序的文本
- 保留原文档的结构,包括标题、段落、列表等
- 提取图像、图片标题、表格、表格标题
- 自动识别文档中的公式并将公式转换成latex
- 自动识别文档中的表格并将表格转换成latex
- 乱码PDF自动检测并启用OCR
- 支持CPU和GPU环境
- 支持windows/linux/mac平台
xuchao's avatar
xuchao committed
103

drunkpig's avatar
drunkpig committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
## 快速开始

如果遇到任何安装问题,请先查询 <a href="#faq">FAQ</a> </br>
如果遇到解析效果不及预期,参考 <a href="#known-issues">Known Issues</a></br>
有3种不同方式可以体验MinerU的效果:

- [在线体验(无需任何安装)](#在线体验)
- [使用CPU快速体验(Windows,Linux,Mac)](#使用cpu快速体验)
- [Linux/Windows + CUDA](#使用gpu)

**⚠️安装前必看——软硬件环境支持说明**

为了确保项目的稳定性和可靠性,我们在开发过程中仅对特定的软硬件环境进行优化和测试。这样当用户在推荐的系统配置上部署和运行项目时,能够获得最佳的性能表现和最少的兼容性问题。

通过集中资源和精力于主线环境,我们团队能够更高效地解决潜在的BUG,及时开发新功能。

在非主线环境中,由于硬件、软件配置的多样性,以及第三方依赖项的兼容性问题,我们无法100%保证项目的完全可用性。因此,对于希望在非推荐环境中使用本项目的用户,我们建议先仔细阅读文档以及FAQ,大多数问题已经在FAQ中有对应的解决方案,除此之外我们鼓励社区反馈问题,以便我们能够逐步扩大支持范围。

<table>
    <tr>
        <td colspan="3" rowspan="2">操作系统</td>
    </tr>
    <tr>
        <td>Ubuntu 22.04 LTS</td>
        <td>Windows 10 / 11</td>
        <td>macOS 11+</td>
    </tr>
    <tr>
        <td colspan="3">CPU</td>
        <td>x86_64</td>
        <td>x86_64</td>
        <td>x86_64 / arm64</td>
    </tr>
    <tr>
        <td colspan="3">内存</td>
        <td colspan="3">大于等于16GB,推荐32G以上</td>
    </tr>
    <tr>
        <td colspan="3">python版本</td>
        <td colspan="3">3.10</td>
    </tr>
    <tr>
        <td colspan="3">Nvidia Driver 版本</td>
        <td>latest(专有驱动)</td>
        <td>latest</td>
        <td>None</td>
    </tr>
    <tr>
        <td colspan="3">CUDA环境</td>
        <td>自动安装[12.1(pytorch)+11.8(paddle)]</td>
        <td>11.8(手动安装)+cuDNN v8.7.0(手动安装)</td>
        <td>None</td>
    </tr>
    <tr>
        <td rowspan="2">GPU硬件支持列表</td>
        <td colspan="2">最低要求 8G+显存</td>
        <td colspan="2">3060ti/3070/3080/3080ti/4060/4070/4070ti<br>
        8G显存仅可开启lavout和公式识别加速</td>
        <td rowspan="2">None</td>
    </tr>
    <tr>
        <td colspan="2">推荐配置 16G+显存</td>
        <td colspan="2">3090/3090ti/4070tisuper/4080/4090<br>
        16G及以上可以同时开启layout,公式识别和ocr加速</td>
    </tr>
</table>

### 在线体验

[在线体验点击这里](https://opendatalab.com/OpenSourceTools/Extractor/PDF)

### 使用CPU快速体验

#### 1. 安装magic-pdf

最新版本国内镜像源同步可能会有延迟,请耐心等待
xuchao's avatar
xuchao committed
180
181
182
183

```bash
conda create -n MinerU python=3.10
conda activate MinerU
drunkpig's avatar
drunkpig committed
184
pip install magic-pdf[full]==0.7.0b1 --extra-index-url https://wheels.myhloli.com -i https://pypi.tuna.tsinghua.edu.cn/simple
xuchao's avatar
xuchao committed
185
186
187
188
```

#### 2. 下载模型权重文件

drunkpig's avatar
drunkpig committed
189
190
详细参考 [如何下载模型文件](docs/how_to_download_models_zh_cn.md)

xuchao's avatar
xuchao committed
191
> ❗️模型下载后请务必检查模型文件是否下载完整
drunkpig's avatar
drunkpig committed
192
>
xuchao's avatar
xuchao committed
193
194
195
> 请检查目录下的模型文件大小与网页上描述是否一致,如果可以的话,最好通过sha256校验模型是否下载完整

#### 3. 拷贝配置文件并进行配置
drunkpig's avatar
drunkpig committed
196

xuchao's avatar
xuchao committed
197
在仓库根目录可以获得 [magic-pdf.template.json](magic-pdf.template.json) 配置模版文件
drunkpig's avatar
drunkpig committed
198

xuchao's avatar
xuchao committed
199
> ❗️务必执行以下命令将配置文件拷贝到【用户目录】下,否则程序将无法运行
drunkpig's avatar
drunkpig committed
200
201
202
>
> windows的用户目录为 "C:\\Users\\用户名", linux用户目录为 "/home/用户名", macOS用户目录为 "/Users/用户名"

xuchao's avatar
xuchao committed
203
204
205
206
207
```bash
cp magic-pdf.template.json ~/magic-pdf.json
```

在用户目录中找到magic-pdf.json文件并配置"models-dir"为[2. 下载模型权重文件](#2-下载模型权重文件)中下载的模型权重文件所在目录
drunkpig's avatar
drunkpig committed
208

xuchao's avatar
xuchao committed
209
> ❗️务必正确配置模型权重文件所在目录的【绝对路径】,否则会因为找不到模型文件而导致程序无法运行
drunkpig's avatar
drunkpig committed
210
211
>
> windows系统中此路径应包含盘符,且需把路径中所有的`"\"`替换为`"/"`,否则会因为转义原因导致json文件语法错误。
xuchao's avatar
xuchao committed
212
213
> 

drunkpig's avatar
drunkpig committed
214
> 例如:模型放在D盘根目录的models目录,则model-dir的值应为"D:/models"
xuchao's avatar
xuchao committed
215
216
217

```json
{
drunkpig's avatar
drunkpig committed
218
219
220
221
222
223
  // other config
  "models-dir": "D:/models",
  "table-config": {
        "is_table_recog_enable": false, // 表格识别功能默认是关闭的,如果需要修改此处的值
        "max_time": 400
    }
xuchao's avatar
xuchao committed
224
225
226
}
```

drunkpig's avatar
drunkpig committed
227
### 使用GPU
xuchao's avatar
xuchao committed
228

drunkpig's avatar
drunkpig committed
229
如果您的设备支持CUDA,且满足主线环境中的显卡要求,则可以使用GPU加速,请根据自己的系统选择适合的教程:
xuchao's avatar
xuchao committed
230

drunkpig's avatar
drunkpig committed
231
232
233
234
235
236
237
238
239
240
241
- [Ubuntu22.04LTS + GPU](docs/README_Ubuntu_CUDA_Acceleration_zh_CN.md)
- [Windows10/11 + GPU](docs/README_Windows_CUDA_Acceleration_zh_CN.md)
- 使用Docker快速部署
    > Docker 需设备gpu显存大于等于16GB,默认开启所有加速功能
  ```bash
  wget https://github.com/opendatalab/MinerU/raw/master/Dockerfile
  docker build -t mineru:0.7.0b1 .
  docker run --rm -it --gpus=all mineru:0.7.0b1 /bin/bash
  magic-pdf --help
  ```
    
xuchao's avatar
xuchao committed
242

drunkpig's avatar
drunkpig committed
243
## 使用
xuchao's avatar
xuchao committed
244

drunkpig's avatar
drunkpig committed
245
### 命令行
xuchao's avatar
xuchao committed
246
247

```bash
drunkpig's avatar
drunkpig committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
magic-pdf --help
Usage: magic-pdf [OPTIONS]

Options:
  -v, --version                display the version and exit
  -p, --path PATH              local pdf filepath or directory  [required]
  -o, --output-dir TEXT        output local directory
  -m, --method [ocr|txt|auto]  the method for parsing pdf.
                               ocr: using ocr technique to extract information from pdf,
                               txt: suitable for the text-based pdf only and outperform ocr,
                               auto: automatically choose the best method for parsing pdf
                                  from ocr and txt.
                               without method specified, auto will be used by default.
  --help                       Show this message and exit.


## show version
magic-pdf -v

## command line example
magic-pdf -p {some_pdf} -o {some_output_dir} -m auto
xuchao's avatar
xuchao committed
269
270
```

drunkpig's avatar
drunkpig committed
271
272
273
274
275
276
277
278
279
280
281
其中 `{some_pdf}` 可以是单个pdf文件,也可以是一个包含多个pdf文件的目录。
运行完命令后输出的结果会保存在`{some_output_dir}`目录下, 输出的文件列表如下

```text
├── some_pdf.md                          # markdown 文件
├── images                               # 存放图片目录
├── some_pdf_layout.pdf                  # layout 绘图
├── some_pdf_middle.json                 # minerU 中间处理结果
├── some_pdf_model.json                  # 模型推理结果
├── some_pdf_origin.pdf                  # 原 pdf 文件
└── some_pdf_spans.pdf                   # 最小粒度的bbox位置信息绘图
xuchao's avatar
xuchao committed
282
283
```

drunkpig's avatar
drunkpig committed
284
更多有关输出文件的信息,请参考[输出文件说明](docs/output_file_zh_cn.md)
xuchao's avatar
xuchao committed
285

drunkpig's avatar
drunkpig committed
286
287
288
### API

处理本地磁盘上的文件
xuchao's avatar
xuchao committed
289
290
291
292

```python
image_writer = DiskReaderWriter(local_image_dir)
image_dir = str(os.path.basename(local_image_dir))
drunkpig's avatar
drunkpig committed
293
jso_useful_key = {"_pdf_type": "", "model_list": []}
xuchao's avatar
xuchao committed
294
295
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
drunkpig's avatar
drunkpig committed
296
pipe.pipe_analyze()
xuchao's avatar
xuchao committed
297
298
299
300
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

drunkpig's avatar
drunkpig committed
301
302
处理对象存储上的文件

xuchao's avatar
xuchao committed
303
304
305
306
307
```python
s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint)
image_dir = "s3://img_bucket/"
s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir)
pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN)
drunkpig's avatar
drunkpig committed
308
jso_useful_key = {"_pdf_type": "", "model_list": []}
xuchao's avatar
xuchao committed
309
310
pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli)
pipe.pipe_classify()
drunkpig's avatar
drunkpig committed
311
pipe.pipe_analyze()
xuchao's avatar
xuchao committed
312
313
314
315
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

drunkpig's avatar
drunkpig committed
316
详细实现可参考
xuchao's avatar
xuchao committed
317

drunkpig's avatar
drunkpig committed
318
319
- [demo.py 最简单的处理方式](demo/demo.py)
- [magic_pdf_parse_main.py 能够更清晰看到处理流程](demo/magic_pdf_parse_main.py)
xuchao's avatar
xuchao committed
320

drunkpig's avatar
drunkpig committed
321
### 二次开发
xuchao's avatar
xuchao committed
322

drunkpig's avatar
drunkpig committed
323
TODO
xuchao's avatar
xuchao committed
324

drunkpig's avatar
drunkpig committed
325
# TODO
xuchao's avatar
xuchao committed
326

drunkpig's avatar
drunkpig committed
327
328
329
330
331
332
333
- [ ] 基于语义的阅读顺序
- [ ] 正文中列表识别
- [ ] 正文中代码块识别
- [ ] 目录识别
- [x] 表格识别
- [ ] [化学式识别](docs/chemical_knowledge_introduction/introduction.pdf)
- [ ] 几何图形识别
xuchao's avatar
xuchao committed
334

drunkpig's avatar
drunkpig committed
335
# Known Issues
xuchao's avatar
xuchao committed
336

drunkpig's avatar
drunkpig committed
337
338
339
340
341
342
343
- 阅读顺序基于规则的分割,在一些情况下会乱序
- 不支持竖排文字
- 列表、代码块、目录在layout模型里还没有支持
- 漫画书、艺术图册、小学教材、习题尚不能很好解析
- 在一些公式密集的PDF上强制启用OCR效果会更好
- 如果您要处理包含大量公式的pdf,强烈建议开启OCR功能。使用pymuPDF提取文字的时候会出现文本行互相重叠的情况导致公式插入位置不准确。
- **表格识别**目前处于测试阶段,识别速度较慢,识别准确度有待提升。以下是我们在Ubuntu 22.04 LTS + Intel(R) Xeon(R) Platinum 8352V CPU @ 2.10GHz + NVIDIA GeForce RTX 4090环境下的一些性能测试结果,可供参考。
xuchao's avatar
xuchao committed
344

drunkpig's avatar
drunkpig committed
345
346
347
348
349
| 表格大小     | 解析耗时 |
| ------------ | -------- |
| 6\*5 55kb    | 37s      |
| 16\*12 284kb | 3m18s    |
| 44\*7 559kb  | 4m12s    |
xuchao's avatar
xuchao committed
350

drunkpig's avatar
drunkpig committed
351
# FAQ
xuchao's avatar
xuchao committed
352
353


drunkpig's avatar
drunkpig committed
354
[常见问题](docs/FAQ_zh_cn.md)
xuchao's avatar
xuchao committed
355

drunkpig's avatar
drunkpig committed
356
357
358
359
<<<<<<< HEAD
=======
[FAQ](docs/FAQ_en_us.md)
>>>>>>> 7f0fe20004af7416db886f4b75c116bcc1c986b4
xuchao's avatar
xuchao committed
360

drunkpig's avatar
drunkpig committed
361
[FAQ](docs/FAQ_en_us.md)
xuchao's avatar
xuchao committed
362

drunkpig's avatar
drunkpig committed
363
# All Thanks To Our Contributors
xuchao's avatar
xuchao committed
364
365
366
367
368

<a href="https://github.com/opendatalab/MinerU/graphs/contributors">
  <img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>

drunkpig's avatar
drunkpig committed
369
# License Information
xuchao's avatar
xuchao committed
370
371
372
373
374

[LICENSE.md](LICENSE.md)

本项目目前采用PyMuPDF以实现高级功能,但因其遵循AGPL协议,可能对某些使用场景构成限制。未来版本迭代中,我们计划探索并替换为许可条款更为宽松的PDF处理库,以提升用户友好度及灵活性。

drunkpig's avatar
drunkpig committed
375
# Acknowledgments
xuchao's avatar
xuchao committed
376

drunkpig's avatar
drunkpig committed
377
378
- [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit)
- [StructEqTable](https://github.com/UniModal4Reasoning/StructEqTable-Deploy)
xuchao's avatar
xuchao committed
379
380
381
382
383
- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)

drunkpig's avatar
drunkpig committed
384
# Citation
xuchao's avatar
xuchao committed
385
386

```bibtex
drunkpig's avatar
drunkpig committed
387
388
389
390
391
392
393
@article{he2024opendatalab,
  title={Opendatalab: Empowering general artificial intelligence with open datasets},
  author={He, Conghui and Li, Wei and Jin, Zhenjiang and Xu, Chao and Wang, Bin and Lin, Dahua},
  journal={arXiv preprint arXiv:2407.13773},
  year={2024}
}

xuchao's avatar
xuchao committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
@misc{2024mineru,
    title={MinerU: A One-stop, Open-source, High-quality Data Extraction Tool},
    author={MinerU Contributors},
    howpublished = {\url{https://github.com/opendatalab/MinerU}},
    year={2024}
}
```

# Star History

<a>
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
 </picture>
</a>

drunkpig's avatar
drunkpig committed
412
413
414
415
416
417
418
419
420
421
422
423
424
# Magic-doc

[Magic-Doc](https://github.com/InternLM/magic-doc) Fast speed ppt/pptx/doc/docx/pdf extraction tool

# Magic-html

[Magic-HTML](https://github.com/opendatalab/magic-html) Mixed web page extraction tool

# Links

- [LabelU (A Lightweight Multi-modal Data Annotation Tool)](https://github.com/opendatalab/labelU)
- [LabelLLM (An Open-source LLM Dialogue Annotation Platform)](https://github.com/opendatalab/LabelLLM)
- [PDF-Extract-Kit (A Comprehensive Toolkit for High-Quality PDF Content Extraction)](https://github.com/opendatalab/PDF-Extract-Kit)