README.md 9.14 KB
Newer Older
徐超's avatar
徐超 committed
1
2
3
<div id="top">

<p align="center">
徐超's avatar
徐超 committed
4
  <img src="docs/images/MinerU-logo.png" width="160px" style="vertical-align:middle;">
徐超's avatar
徐超 committed
5
6
7
</p>

</div>
赵小蒙's avatar
赵小蒙 committed
8
<div align="center">
赵小蒙's avatar
赵小蒙 committed
9

赵小蒙's avatar
赵小蒙 committed
10
11
12
[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
myhloli's avatar
myhloli committed
13
14
15
16
17
18
19
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![PyPI version](https://badge.fury.io/py/magic-pdf.svg)](https://badge.fury.io/py/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf)



赵小蒙's avatar
赵小蒙 committed
20
21
22
23
24
25

[English](README.md) | [简体中文](README_zh-CN.md)

</div>

<div align="center">
徐超's avatar
徐超 committed
26
27
28
29
30
31
<p align="center">
<a href="https://github.com/opendatalab/MinerU">MinerU: An end-to-end PDF parsing tool based on PDF-Extract-Kit, supporting conversion from PDF to Markdown.</a>🚀🚀🚀<br>
<a href="https://github.com/opendatalab/PDF-Extract-Kit">PDF-Extract-Kit: A Comprehensive Toolkit for High-Quality PDF Content Extraction</a>🔥🔥🔥
</p>

<p align="center">
徐超's avatar
徐超 committed
32
    👋 join us on <a href="https://discord.gg/AsQMhuMN" target="_blank">Discord</a> and <a href="https://cdn.vansin.top/internlm/mineru.jpg" target="_blank">WeChat</a>
徐超's avatar
徐超 committed
33
</p>
赵小蒙's avatar
赵小蒙 committed
34
</div>
赵小蒙's avatar
赵小蒙 committed
35

赵小蒙's avatar
赵小蒙 committed
36
37
# MinerU 

赵小蒙's avatar
赵小蒙 committed
38

赵小蒙's avatar
赵小蒙 committed
39
40
## Introduction

赵小蒙's avatar
赵小蒙 committed
41
MinerU is a one-stop, open-source, high-quality data extraction tool, includes the following primary features:
赵小蒙's avatar
赵小蒙 committed
42

赵小蒙's avatar
赵小蒙 committed
43
44
- [Magic-PDF](#Magic-PDF)  PDF Document Extraction  
- [Magic-Doc](#Magic-Doc)  Webpage & E-book Extraction
赵小蒙's avatar
赵小蒙 committed
45

赵小蒙's avatar
赵小蒙 committed
46

赵小蒙's avatar
赵小蒙 committed
47
# Magic-PDF
赵小蒙's avatar
赵小蒙 committed
48

赵小蒙's avatar
赵小蒙 committed
49

赵小蒙's avatar
赵小蒙 committed
50
## Introduction
赵小蒙's avatar
赵小蒙 committed
51

赵小蒙's avatar
赵小蒙 committed
52
Magic-PDF is a tool designed to convert PDF documents into Markdown format, capable of processing files stored locally or on object storage supporting S3 protocol.
赵小蒙's avatar
赵小蒙 committed
53

赵小蒙's avatar
赵小蒙 committed
54
Key features include:
赵小蒙's avatar
赵小蒙 committed
55

赵小蒙's avatar
赵小蒙 committed
56
57
58
- Support for multiple front-end model inputs
- Removal of headers, footers, footnotes, and page numbers
- Human-readable layout formatting
赵小蒙's avatar
赵小蒙 committed
59
- Retains the original document's structure and formatting, including headings, paragraphs, lists, and more
赵小蒙's avatar
赵小蒙 committed
60
61
62
63
64
- Extraction and display of images and tables within markdown
- Conversion of equations into LaTeX format
- Automatic detection and conversion of garbled PDFs
- Compatibility with CPU and GPU environments
- Available for Windows, Linux, and macOS platforms
赵小蒙's avatar
赵小蒙 committed
65

myhloli's avatar
myhloli committed
66

赵小蒙's avatar
赵小蒙 committed
67
https://github.com/opendatalab/MinerU/assets/11393164/618937cb-dc6a-4646-b433-e3131a5f4070
myhloli's avatar
myhloli committed
68
69
70



赵小蒙's avatar
赵小蒙 committed
71
72
73
74
## Project Panorama

![Project Panorama](docs/images/project_panorama_en.png)

赵小蒙's avatar
赵小蒙 committed
75

76
77
78
79
## Flowchart

![Flowchart](docs/images/flowchart_en.png)

drunkpig's avatar
drunkpig committed
80
### Dependency repositorys
81

drunkpig's avatar
drunkpig committed
82
- [PDF-Extract-Kit : A Comprehensive Toolkit for High-Quality PDF Content Extraction](https://github.com/opendatalab/PDF-Extract-Kit) 🚀🚀🚀
赵小蒙's avatar
赵小蒙 committed
83

赵小蒙's avatar
赵小蒙 committed
84
## Getting Started
赵小蒙's avatar
赵小蒙 committed
85

赵小蒙's avatar
赵小蒙 committed
86
### Requirements
赵小蒙's avatar
赵小蒙 committed
87

赵小蒙's avatar
赵小蒙 committed
88
- Python >= 3.9
赵小蒙's avatar
赵小蒙 committed
89

90
91
92
93
94
95
Using a virtual environment is recommended to avoid potential dependency conflicts; both venv and conda are suitable. 
For example:
```bash
conda create -n MinerU python=3.10
conda activate MinerU
```
96

97
### Installation and Configuration
赵小蒙's avatar
赵小蒙 committed
98

赵小蒙's avatar
赵小蒙 committed
99
#### 1. Install Magic-PDF
赵小蒙's avatar
赵小蒙 committed
100

101
102
103
104
105
Install the full-feature package with pip:
>Note: The pip-installed package supports CPU-only and is ideal for quick tests.
>
>For CUDA/MPS acceleration in production, see [Acceleration Using CUDA or MPS](#4-Acceleration-Using-CUDA-or-MPS).

106
```bash
107
pip install magic-pdf[full-cpu]
108
```
109
110
111
112
The full-feature package depends on detectron2, which requires a compilation installation.   
If you need to compile it yourself, please refer to https://github.com/facebookresearch/detectron2/issues/5114  
Alternatively, you can directly use our precompiled whl package (limited to Python 3.10):

113
114
```bash
pip install detectron2 --extra-index-url https://myhloli.github.io/wheels/
赵小蒙's avatar
赵小蒙 committed
115
116
117
```


118
119
#### 2. Downloading model weights files

myhloli's avatar
myhloli committed
120
For detailed references, please see below [how_to_download_models](docs/how_to_download_models_en.md)
121
122
123
124
125

After downloading the model weights, move the 'models' directory to a directory on a larger disk space, preferably an SSD.


#### 3. Copy the Configuration File and Make Configurations
126
You can get the [magic-pdf.template.json](magic-pdf.template.json) file in the repository root directory.
赵小蒙's avatar
赵小蒙 committed
127
```bash
赵小蒙's avatar
赵小蒙 committed
128
cp magic-pdf.template.json ~/magic-pdf.json
129
130
131
132
133
134
135
136
137
138
```
In magic-pdf.json, configure "models-dir" to point to the directory where the model weights files are located.

```json
{
  "models-dir": "/tmp/models"
}
```


139
140
#### 4. Acceleration Using CUDA or MPS
If you have an available Nvidia GPU or are using a Mac with Apple Silicon, you can leverage acceleration with CUDA or MPS respectively.
141
142
##### CUDA

myhloli's avatar
myhloli committed
143
144
You need to install the corresponding PyTorch version according to your CUDA version.  
This example installs the CUDA 11.8 version.More information https://pytorch.org/get-started/locally/  
145
146
147
```bash
pip install --force-reinstall torch==2.3.1 torchvision==0.18.1 --index-url https://download.pytorch.org/whl/cu118
```
myhloli's avatar
myhloli committed
148
Also, you need to modify the value of "device-mode" in the configuration file magic-pdf.json.  
149
150
151
152
153
154
155
156
```json
{
  "device-mode":"cuda"
}
```

##### MPS

myhloli's avatar
myhloli committed
157
158
For macOS users with M-series chip devices, you can use MPS for inference acceleration.  
You also need to modify the value of "device-mode" in the configuration file magic-pdf.json.  
159
160
161
162
163
164
```json
{
  "device-mode":"mps"
}
```

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

### Usage

#### 1.Usage via Command Line

###### simple

```bash
magic-pdf pdf-command --pdf "pdf_path" --inside_model true
```
After the program has finished, you can find the generated markdown files under the directory "/tmp/magic-pdf".  
You can find the corresponding xxx_model.json file in the markdown directory.   
If you intend to do secondary development on the post-processing pipeline, you can use the command:  
```bash
magic-pdf pdf-command --pdf "pdf_path" --model "model_json_path"
```
In this way, you won't need to re-run the model data, making debugging more convenient.


###### more 

```bash
magic-pdf --help
```


#### 2. Usage via Api
赵小蒙's avatar
赵小蒙 committed
192
193
194
195
196

###### Local
```python
image_writer = DiskReaderWriter(local_image_dir)
image_dir = str(os.path.basename(local_image_dir))
197
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
198
199
200
201
202
203
204
205
206
207
208
209
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

###### Object Storage
```python
s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint)
image_dir = "s3://img_bucket/"
s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir)
pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN)
210
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
211
212
213
214
215
216
pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli)
pipe.pipe_classify()
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

217
Demo can be referred to [demo.py](demo/demo.py)
赵小蒙's avatar
赵小蒙 committed
218

赵小蒙's avatar
赵小蒙 committed
219

赵小蒙's avatar
赵小蒙 committed
220
221
# Magic-Doc

赵小蒙's avatar
赵小蒙 committed
222

赵小蒙's avatar
赵小蒙 committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
## Introduction

Magic-Doc is a tool designed to convert web pages or multi-format e-books into markdown format.

Key Features Include:

- Web Page Extraction
  - Cross-modal precise parsing of text, images, tables, and formula information.

- E-Book Document Extraction
  - Supports various document formats including epub, mobi, with full adaptation for text and images.

- Language Type Identification
  - Accurate recognition of 176 languages.

https://github.com/opendatalab/MinerU/assets/11393164/a5a650e9-f4c0-463e-acc3-960967f1a1ca



https://github.com/opendatalab/MinerU/assets/11393164/0f4a6fe9-6cca-4113-9fdc-a537749d764d



https://github.com/opendatalab/MinerU/assets/11393164/20438a02-ce6c-4af8-9dde-d722a4e825b2



赵小蒙's avatar
赵小蒙 committed
250

赵小蒙's avatar
赵小蒙 committed
251
252
## Project Repository

赵小蒙's avatar
赵小蒙 committed
253
- [Magic-Doc](https://github.com/InternLM/magic-doc)
赵小蒙's avatar
赵小蒙 committed
254
  Outstanding Webpage and E-book Extraction Tool
赵小蒙's avatar
赵小蒙 committed
255
256


赵小蒙's avatar
赵小蒙 committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# All Thanks To Our Contributors

<a href="https://github.com/magicpdf/Magic-PDF/graphs/contributors">
  <img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>


# License Information

[LICENSE.md](LICENSE.md)

The project currently leverages PyMuPDF to deliver advanced functionalities; however, its adherence to the AGPL license may impose limitations on certain use cases. In upcoming iterations, we intend to explore and transition to a more permissively licensed PDF processing library to enhance user-friendliness and flexibility.


# Acknowledgments

- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
赵小蒙's avatar
赵小蒙 committed
275
276
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
赵小蒙's avatar
赵小蒙 committed
277
278


赵小蒙's avatar
赵小蒙 committed
279
280
281
282
283
284
285
286
287
288
289
290
291
# Citation

```bibtex
@misc{2024mineru,
    title={MinerU: A One-stop, Open-source, High-quality Data Extraction Tool},
    author={MinerU Contributors},
    howpublished = {\url{https://github.com/opendatalab/MinerU}},
    year={2024}
}
```


# Star History
赵小蒙's avatar
赵小蒙 committed
292

赵小蒙's avatar
赵小蒙 committed
293
294
295
296
297
298
<a>
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
 </picture>
myhloli's avatar
myhloli committed
299
</a>