README_zh-CN.md 30.3 KB
Newer Older
xuchao's avatar
xuchao committed
1
2
<div align="center" xmlns="http://www.w3.org/1999/html">
<!-- logo -->
徐超's avatar
徐超 committed
3
<p align="center">
xuchao's avatar
xuchao committed
4
  <img src="docs/images/MinerU-logo.png" width="300px" style="vertical-align:middle;">
徐超's avatar
徐超 committed
5
</p>
赵小蒙's avatar
赵小蒙 committed
6

xuchao's avatar
xuchao committed
7
<!-- icon -->
drunkpig's avatar
drunkpig committed
8

赵小蒙's avatar
赵小蒙 committed
9
10
11
[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
myhloli's avatar
myhloli committed
12
13
14
15
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![PyPI version](https://badge.fury.io/py/magic-pdf.svg)](https://badge.fury.io/py/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf)
drunkpig's avatar
drunkpig committed
16

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
17
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://opendatalab.com/OpenSourceTools/Extractor/PDF)
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
18
19
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
drunkpig's avatar
drunkpig committed
20
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/papayalove/b5f4913389e7ff9883c6b687de156e78/mineru_demo.ipynb)
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
21
[![Paper](https://img.shields.io/badge/Paper-arXiv-green)](https://arxiv.org/abs/2409.18839)
drunkpig's avatar
drunkpig committed
22

myhloli's avatar
myhloli committed
23
<a href="https://trendshift.io/repositories/11174" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11174" alt="opendatalab%2FMinerU | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
赵小蒙's avatar
赵小蒙 committed
24

xuchao's avatar
xuchao committed
25
<!-- language -->
赵小蒙's avatar
赵小蒙 committed
26

drunkpig's avatar
drunkpig committed
27
[English](README.md) | [简体中文](README_zh-CN.md)
赵小蒙's avatar
赵小蒙 committed
28

xuchao's avatar
xuchao committed
29
<!-- hot link -->
drunkpig's avatar
drunkpig committed
30

徐超's avatar
徐超 committed
31
32
33
34
<p align="center">
<a href="https://github.com/opendatalab/PDF-Extract-Kit">PDF-Extract-Kit: 高质量PDF解析工具箱</a>🔥🔥🔥
</p>

xuchao's avatar
xuchao committed
35
<!-- join us -->
drunkpig's avatar
drunkpig committed
36

徐超's avatar
徐超 committed
37
<p align="center">
xuchao's avatar
xuchao committed
38
    👋 join us on <a href="https://discord.gg/Tdedn9GTXq" target="_blank">Discord</a> and <a href="https://cdn.vansin.top/internlm/mineru.jpg" target="_blank">WeChat</a>
徐超's avatar
徐超 committed
39
</p>
赵小蒙's avatar
赵小蒙 committed
40

xuchao's avatar
xuchao committed
41
</div>
赵小蒙's avatar
赵小蒙 committed
42

xuchao's avatar
xuchao committed
43
# 更新记录
drunkpig's avatar
drunkpig committed
44
- 2024/09/09 0.8.0发布,支持Dockerfile快速部署,同时上线了huggingface、modelscope demo
yyy's avatar
yyy committed
45
- 2024/08/30 0.7.1发布,集成了paddle tablemaster表格识别功能
xuchao's avatar
xuchao committed
46
47
48
49
50
- 2024/08/09 0.7.0b1发布,简化安装步骤提升易用性,加入表格识别功能
- 2024/08/01 0.6.2b1发布,优化了依赖冲突问题和安装文档
- 2024/07/05 首次开源

<!-- TABLE OF CONTENT -->
drunkpig's avatar
drunkpig committed
51

xuchao's avatar
xuchao committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
<details open="open">
  <summary><h2 style="display: inline-block">文档目录</h2></summary>
  <ol>
    <li>
      <a href="#mineru">MinerU</a>
      <ul>
        <li><a href="#项目简介">项目简介</a></li>
        <li><a href="#主要功能">主要功能</a></li>
        <li><a href="#快速开始">快速开始</a>
            <ul>
            <li><a href="#在线体验">在线体验</a></li>
            <li><a href="#使用CPU快速体验">使用CPU快速体验</a></li>
            <li><a href="#使用GPU">使用GPU</a></li>
            </ul>
        </li>
        <li><a href="#使用">使用方式</a>
            <ul>
            <li><a href="#命令行">命令行</a></li>
            <li><a href="#api">API</a></li>
            <li><a href="#二次开发">二次开发</a></li>
            </ul>
        </li>
      </ul>
    </li>
    <li><a href="#todo">TODO</a></li>
    <li><a href="#known-issues">Known Issues</a></li>
    <li><a href="#faq">FAQ</a></li>
    <li><a href="#all-thanks-to-our-contributors">Contributors</a></li>
    <li><a href="#license-information">License Information</a></li>
    <li><a href="#acknowledgments">Acknowledgements</a></li>
    <li><a href="#citation">Citation</a></li>
    <li><a href="#star-history">Star History</a></li>
    <li><a href="#magic-doc">magic-doc快速提取PPT/DOC/PDF</a></li>
    <li><a href="#magic-html">magic-html提取混合网页内容</a></li>
    <li><a href="#links">Links</a></li>
  </ol>
</details>

# MinerU
drunkpig's avatar
drunkpig committed
91

xuchao's avatar
xuchao committed
92
## 项目简介
drunkpig's avatar
drunkpig committed
93

xuchao's avatar
xuchao committed
94
95
96
MinerU是一款将PDF转化为机器可读格式的工具(如markdown、json),可以很方便地抽取为任意格式。
MinerU诞生于[书生-浦语](https://github.com/InternLM/InternLM)的预训练过程中,我们将会集中精力解决科技文献中的符号转化问题,希望在大模型时代为科技发展做出贡献。
相比国内外知名商用产品MinerU还很年轻,如果遇到问题或者结果不及预期请到[issue](https://github.com/opendatalab/MinerU/issues)提交问题,同时**附上相关PDF**
myhloli's avatar
myhloli committed
97

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
98
https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c
myhloli's avatar
myhloli committed
99

xuchao's avatar
xuchao committed
100
## 主要功能
myhloli's avatar
myhloli committed
101

xuchao's avatar
xuchao committed
102
103
104
105
106
107
108
109
110
- 删除页眉、页脚、脚注、页码等元素,保持语义连贯
- 对多栏输出符合人类阅读顺序的文本
- 保留原文档的结构,包括标题、段落、列表等
- 提取图像、图片标题、表格、表格标题
- 自动识别文档中的公式并将公式转换成latex
- 自动识别文档中的表格并将表格转换成latex
- 乱码PDF自动检测并启用OCR
- 支持CPU和GPU环境
- 支持windows/linux/mac平台
赵小蒙's avatar
update:  
赵小蒙 committed
111

xuchao's avatar
xuchao committed
112
113
114
115
116
## 快速开始

如果遇到任何安装问题,请先查询 <a href="#faq">FAQ</a> </br>
如果遇到解析效果不及预期,参考 <a href="#known-issues">Known Issues</a></br>
有3种不同方式可以体验MinerU的效果:
drunkpig's avatar
drunkpig committed
117

xuchao's avatar
xuchao committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
- [在线体验(无需任何安装)](#在线体验)
- [使用CPU快速体验(Windows,Linux,Mac)](#使用cpu快速体验)
- [Linux/Windows + CUDA](#使用gpu)

**⚠️安装前必看——软硬件环境支持说明**

为了确保项目的稳定性和可靠性,我们在开发过程中仅对特定的软硬件环境进行优化和测试。这样当用户在推荐的系统配置上部署和运行项目时,能够获得最佳的性能表现和最少的兼容性问题。

通过集中资源和精力于主线环境,我们团队能够更高效地解决潜在的BUG,及时开发新功能。

在非主线环境中,由于硬件、软件配置的多样性,以及第三方依赖项的兼容性问题,我们无法100%保证项目的完全可用性。因此,对于希望在非推荐环境中使用本项目的用户,我们建议先仔细阅读文档以及FAQ,大多数问题已经在FAQ中有对应的解决方案,除此之外我们鼓励社区反馈问题,以便我们能够逐步扩大支持范围。

<table>
    <tr>
        <td colspan="3" rowspan="2">操作系统</td>
    </tr>
    <tr>
        <td>Ubuntu 22.04 LTS</td>
        <td>Windows 10 / 11</td>
        <td>macOS 11+</td>
    </tr>
    <tr>
        <td colspan="3">CPU</td>
        <td>x86_64</td>
        <td>x86_64</td>
        <td>x86_64 / arm64</td>
    </tr>
    <tr>
        <td colspan="3">内存</td>
        <td colspan="3">大于等于16GB,推荐32G以上</td>
    </tr>
    <tr>
        <td colspan="3">python版本</td>
        <td colspan="3">3.10</td>
    </tr>
    <tr>
        <td colspan="3">Nvidia Driver 版本</td>
        <td>latest(专有驱动)</td>
        <td>latest</td>
        <td>None</td>
    </tr>
    <tr>
        <td colspan="3">CUDA环境</td>
        <td>自动安装[12.1(pytorch)+11.8(paddle)]</td>
        <td>11.8(手动安装)+cuDNN v8.7.0(手动安装)</td>
        <td>None</td>
    </tr>
    <tr>
        <td rowspan="2">GPU硬件支持列表</td>
        <td colspan="2">最低要求 8G+显存</td>
        <td colspan="2">3060ti/3070/3080/3080ti/4060/4070/4070ti<br>
        8G显存仅可开启lavout和公式识别加速</td>
        <td rowspan="2">None</td>
    </tr>
    <tr>
        <td colspan="2">推荐配置 16G+显存</td>
        <td colspan="2">3090/3090ti/4070tisuper/4080/4090<br>
sfk's avatar
sfk committed
175
176
177
        16G及以上可以同时开启layout,公式识别和ocr加速<br>
        24G及以上可以同时开启layout,公式识别,ocr加速和表格识别
        </td>
xuchao's avatar
xuchao committed
178
179
180
181
182
    </tr>
</table>

### 在线体验

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
183
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://opendatalab.com/OpenSourceTools/Extractor/PDF)
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
184
185
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
xuchao's avatar
xuchao committed
186
187
188
189

### 使用CPU快速体验

#### 1. 安装magic-pdf
drunkpig's avatar
drunkpig committed
190

xuchao's avatar
xuchao committed
191
最新版本国内镜像源同步可能会有延迟,请耐心等待
drunkpig's avatar
drunkpig committed
192

193
194
195
```bash
conda create -n MinerU python=3.10
conda activate MinerU
yyy's avatar
yyy committed
196
pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com -i https://pypi.tuna.tsinghua.edu.cn/simple
197
```
drunkpig's avatar
drunkpig committed
198

199
#### 2. 下载模型权重文件
赵小蒙's avatar
赵小蒙 committed
200

xuchao's avatar
xuchao committed
201
详细参考 [如何下载模型文件](docs/how_to_download_models_zh_cn.md)
drunkpig's avatar
drunkpig committed
202

203
#### 3. 修改配置文件以进行额外配置
204

205
206
完成[2. 下载模型权重文件](#2-下载模型权重文件)步骤后,脚本会自动生成用户目录下的magic-pdf.json文件,并自动配置默认模型路径。
您可在【用户目录】下找到magic-pdf.json文件。
drunkpig's avatar
drunkpig committed
207
208
> windows的用户目录为 "C:\\Users\\用户名", linux用户目录为 "/home/用户名", macOS用户目录为 "/Users/用户名"

209
您可修改该文件中的部分配置实现功能的开关,如表格识别功能:
drunkpig's avatar
drunkpig committed
210

211
>如json内没有如下项目,请手动添加需要的项目,并删除注释内容(标准json不支持注释)
drunkpig's avatar
drunkpig committed
212

213
214
```json
{
xuchao's avatar
xuchao committed
215
216
  // other config
  "table-config": {
yyy's avatar
yyy committed
217
        "model": "TableMaster", // 使用structEqTable请修改为'struct_eqtable'
xuchao's avatar
xuchao committed
218
219
220
        "is_table_recog_enable": false, // 表格识别功能默认是关闭的,如果需要修改此处的值
        "max_time": 400
    }
221
222
223
}
```

xuchao's avatar
xuchao committed
224
### 使用GPU
drunkpig's avatar
drunkpig committed
225

xuchao's avatar
xuchao committed
226
如果您的设备支持CUDA,且满足主线环境中的显卡要求,则可以使用GPU加速,请根据自己的系统选择适合的教程:
227

xuchao's avatar
xuchao committed
228
229
- [Ubuntu22.04LTS + GPU](docs/README_Ubuntu_CUDA_Acceleration_zh_CN.md)
- [Windows10/11 + GPU](docs/README_Windows_CUDA_Acceleration_zh_CN.md)
drunkpig's avatar
drunkpig committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
- 使用Docker快速部署
    > Docker 需设备gpu显存大于等于16GB,默认开启所有加速功能
    > 
    > 运行本docker前可以通过以下命令检测自己的设备是否支持在docker上使用CUDA加速
    > 
    > ```bash
    > docker run --rm --gpus=all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi
    > ```
  ```bash
  wget https://github.com/opendatalab/MinerU/raw/master/Dockerfile
  docker build -t mineru:latest .
  docker run --rm -it --gpus=all mineru:latest /bin/bash
  magic-pdf --help
  ```
    
245

xuchao's avatar
xuchao committed
246
## 使用
247

xuchao's avatar
xuchao committed
248
### 命令行
249
250

```bash
xuchao's avatar
xuchao committed
251
252
253
254
255
256
257
magic-pdf --help
Usage: magic-pdf [OPTIONS]

Options:
  -v, --version                display the version and exit
  -p, --path PATH              local pdf filepath or directory  [required]
  -o, --output-dir TEXT        output local directory
drunkpig's avatar
drunkpig committed
258
  -m, --method [ocr|txt|auto]  the method for parsing pdf.
xuchao's avatar
xuchao committed
259
260
261
262
                               ocr: using ocr technique to extract information from pdf,
                               txt: suitable for the text-based pdf only and outperform ocr,
                               auto: automatically choose the best method for parsing pdf
                                  from ocr and txt.
drunkpig's avatar
drunkpig committed
263
                               without method specified, auto will be used by default.
xuchao's avatar
xuchao committed
264
265
266
267
268
269
270
271
  --help                       Show this message and exit.


## show version
magic-pdf -v

## command line example
magic-pdf -p {some_pdf} -o {some_output_dir} -m auto
272
273
```

xuchao's avatar
xuchao committed
274
275
276
277
其中 `{some_pdf}` 可以是单个pdf文件,也可以是一个包含多个pdf文件的目录。
运行完命令后输出的结果会保存在`{some_output_dir}`目录下, 输出的文件列表如下

```text
drunkpig's avatar
drunkpig committed
278
279
280
281
282
283
284
├── some_pdf.md                          # markdown 文件
├── images                               # 存放图片目录
├── some_pdf_layout.pdf                  # layout 绘图
├── some_pdf_middle.json                 # minerU 中间处理结果
├── some_pdf_model.json                  # 模型推理结果
├── some_pdf_origin.pdf                  # 原 pdf 文件
└── some_pdf_spans.pdf                   # 最小粒度的bbox位置信息绘图
285
286
```

xuchao's avatar
xuchao committed
287
更多有关输出文件的信息,请参考[输出文件说明](docs/output_file_zh_cn.md)
288

xuchao's avatar
xuchao committed
289
290
291
### API

处理本地磁盘上的文件
drunkpig's avatar
drunkpig committed
292

赵小蒙's avatar
赵小蒙 committed
293
294
295
```python
image_writer = DiskReaderWriter(local_image_dir)
image_dir = str(os.path.basename(local_image_dir))
xuchao's avatar
xuchao committed
296
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
297
298
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
xuchao's avatar
xuchao committed
299
pipe.pipe_analyze()
赵小蒙's avatar
赵小蒙 committed
300
301
302
303
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

xuchao's avatar
xuchao committed
304
处理对象存储上的文件
drunkpig's avatar
drunkpig committed
305

赵小蒙's avatar
赵小蒙 committed
306
307
308
309
310
```python
s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint)
image_dir = "s3://img_bucket/"
s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir)
pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN)
xuchao's avatar
xuchao committed
311
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
312
313
pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli)
pipe.pipe_classify()
xuchao's avatar
xuchao committed
314
pipe.pipe_analyze()
赵小蒙's avatar
赵小蒙 committed
315
316
317
318
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

drunkpig's avatar
drunkpig committed
319
320
详细实现可参考

xuchao's avatar
xuchao committed
321
322
- [demo.py 最简单的处理方式](demo/demo.py)
- [magic_pdf_parse_main.py 能够更清晰看到处理流程](demo/magic_pdf_parse_main.py)
myhloli's avatar
myhloli committed
323

xuchao's avatar
xuchao committed
324
### 二次开发
325

xuchao's avatar
xuchao committed
326
TODO
327

xuchao's avatar
xuchao committed
328
# TODO
赵小蒙's avatar
赵小蒙 committed
329

xuchao's avatar
xuchao committed
330
331
332
333
334
- [ ] 基于语义的阅读顺序
- [ ] 正文中列表识别
- [ ] 正文中代码块识别
- [ ] 目录识别
- [x] 表格识别
drunkpig's avatar
drunkpig committed
335
- [ ] [化学式识别](docs/chemical_knowledge_introduction/introduction.pdf)
xuchao's avatar
xuchao committed
336
- [ ] 几何图形识别
赵小蒙's avatar
赵小蒙 committed
337

xuchao's avatar
xuchao committed
338
# Known Issues
drunkpig's avatar
drunkpig committed
339

xuchao's avatar
xuchao committed
340
341
342
343
344
345
- 阅读顺序基于规则的分割,在一些情况下会乱序
- 不支持竖排文字
- 列表、代码块、目录在layout模型里还没有支持
- 漫画书、艺术图册、小学教材、习题尚不能很好解析
- 在一些公式密集的PDF上强制启用OCR效果会更好
- 如果您要处理包含大量公式的pdf,强烈建议开启OCR功能。使用pymuPDF提取文字的时候会出现文本行互相重叠的情况导致公式插入位置不准确。
赵小蒙's avatar
赵小蒙 committed
346
347


xuchao's avatar
xuchao committed
348
# FAQ
drunkpig's avatar
drunkpig committed
349

xuchao's avatar
xuchao committed
350
[常见问题](docs/FAQ_zh_cn.md)
赵小蒙's avatar
赵小蒙 committed
351

myhloli's avatar
myhloli committed
352

drunkpig's avatar
drunkpig committed
353
[FAQ](docs/FAQ_en_us.md)
myhloli's avatar
myhloli committed
354

xuchao's avatar
xuchao committed
355
# All Thanks To Our Contributors
赵小蒙's avatar
赵小蒙 committed
356

357
<a href="https://github.com/opendatalab/MinerU/graphs/contributors">
赵小蒙's avatar
赵小蒙 committed
358
359
360
  <img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>

xuchao's avatar
xuchao committed
361
# License Information
赵小蒙's avatar
赵小蒙 committed
362
363
364
365
366

[LICENSE.md](LICENSE.md)

本项目目前采用PyMuPDF以实现高级功能,但因其遵循AGPL协议,可能对某些使用场景构成限制。未来版本迭代中,我们计划探索并替换为许可条款更为宽松的PDF处理库,以提升用户友好度及灵活性。

xuchao's avatar
xuchao committed
367
# Acknowledgments
drunkpig's avatar
drunkpig committed
368

xuchao's avatar
xuchao committed
369
370
- [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit)
- [StructEqTable](https://github.com/UniModal4Reasoning/StructEqTable-Deploy)
赵小蒙's avatar
赵小蒙 committed
371
372
- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
赵小蒙's avatar
赵小蒙 committed
373
374
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
赵小蒙's avatar
赵小蒙 committed
375

xuchao's avatar
xuchao committed
376
# Citation
赵小蒙's avatar
赵小蒙 committed
377
378

```bibtex
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
379
380
381
382
383
384
385
386
387
388
@misc{wang2024mineruopensourcesolutionprecise,
      title={MinerU: An Open-Source Solution for Precise Document Content Extraction}, 
      author={Bin Wang and Chao Xu and Xiaomeng Zhao and Linke Ouyang and Fan Wu and Zhiyuan Zhao and Rui Xu and Kaiwen Liu and Yuan Qu and Fukai Shang and Bo Zhang and Liqun Wei and Zhihao Sui and Wei Li and Botian Shi and Yu Qiao and Dahua Lin and Conghui He},
      year={2024},
      eprint={2409.18839},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2409.18839}, 
}

xuchao's avatar
xuchao committed
389
390
391
392
393
394
@article{he2024opendatalab,
  title={Opendatalab: Empowering general artificial intelligence with open datasets},
  author={He, Conghui and Li, Wei and Jin, Zhenjiang and Xu, Chao and Wang, Bin and Lin, Dahua},
  journal={arXiv preprint arXiv:2407.13773},
  year={2024}
}
赵小蒙's avatar
赵小蒙 committed
395
396
397
```

# Star History
赵小蒙's avatar
赵小蒙 committed
398

赵小蒙's avatar
赵小蒙 committed
399
400
401
402
403
404
<a>
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
 </picture>
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
405
</a>
qiangqiang199's avatar
qiangqiang199 committed
406

xuchao's avatar
xuchao committed
407
# Magic-doc
drunkpig's avatar
drunkpig committed
408

xuchao's avatar
xuchao committed
409
410
411
[Magic-Doc](https://github.com/InternLM/magic-doc) Fast speed ppt/pptx/doc/docx/pdf extraction tool

# Magic-html
drunkpig's avatar
drunkpig committed
412

xuchao's avatar
xuchao committed
413
414
415
416
417
418
419
[Magic-HTML](https://github.com/opendatalab/magic-html) Mixed web page extraction tool

# Links

- [LabelU (A Lightweight Multi-modal Data Annotation Tool)](https://github.com/opendatalab/labelU)
- [LabelLLM (An Open-source LLM Dialogue Annotation Platform)](https://github.com/opendatalab/LabelLLM)
- [PDF-Extract-Kit (A Comprehensive Toolkit for High-Quality PDF Content Extraction)](https://github.com/opendatalab/PDF-Extract-Kit)