magic_model.py 18.6 KB
Newer Older
liukaiwen's avatar
liukaiwen committed
1
2
import json
import math
kernel.h@qq.com's avatar
kernel.h@qq.com committed
3

liukaiwen's avatar
liukaiwen committed
4
5
from magic_pdf.libs.commons import fitz
from loguru import logger
kernel.h@qq.com's avatar
kernel.h@qq.com committed
6

liukaiwen's avatar
liukaiwen committed
7
8
9
10
11
12
from magic_pdf.libs.commons import join_path
from magic_pdf.libs.coordinate_transform import get_scale_ratio
from magic_pdf.libs.ocr_content_type import ContentType
from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
from magic_pdf.libs.math import float_gt
13
14
15
16
17
18
19
from magic_pdf.libs.boxbase import (
    _is_in,
    bbox_relative_pos,
    bbox_distance,
    _is_part_overlap,
    calculate_overlap_area_in_bbox1_area_ratio,
)
liukaiwen's avatar
liukaiwen committed
20
from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
liukaiwen's avatar
liukaiwen committed
21

22
CAPATION_OVERLAP_AREA_RATIO = 0.6
liukaiwen's avatar
liukaiwen committed
23
24

class MagicModel:
kernel.h@qq.com's avatar
kernel.h@qq.com committed
25
26
    """
    每个函数没有得到元素的时候返回空list
liukaiwen's avatar
liukaiwen committed
27

kernel.h@qq.com's avatar
kernel.h@qq.com committed
28
    """
liukaiwen's avatar
liukaiwen committed
29
30
31

    def __fix_axis(self):
        for model_page_info in self.__model_list:
32
            need_remove_list = []
liukaiwen's avatar
liukaiwen committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
            page_no = model_page_info["page_info"]["page_no"]
            horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
                model_page_info, self.__docs[page_no]
            )
            layout_dets = model_page_info["layout_dets"]
            for layout_det in layout_dets:
                x0, y0, _, _, x1, y1, _, _ = layout_det["poly"]
                bbox = [
                    int(x0 / horizontal_scale_ratio),
                    int(y0 / vertical_scale_ratio),
                    int(x1 / horizontal_scale_ratio),
                    int(y1 / vertical_scale_ratio),
                ]
                layout_det["bbox"] = bbox
                # 删除高度或者宽度为0的spans
                if bbox[2] - bbox[0] == 0 or bbox[3] - bbox[1] == 0:
                    need_remove_list.append(layout_det)
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)

53
54
55
56
57
    def __fix_by_confidence(self):
        for model_page_info in self.__model_list:
            need_remove_list = []
            layout_dets = model_page_info["layout_dets"]
            for layout_det in layout_dets:
赵小蒙's avatar
赵小蒙 committed
58
                if layout_det["score"] <= 0.05:
59
60
61
62
63
                    need_remove_list.append(layout_det)
                else:
                    continue
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)
liukaiwen's avatar
liukaiwen committed
64
65

    def __init__(self, model_list: list, docs: fitz.Document):
kernel.h@qq.com's avatar
kernel.h@qq.com committed
66
        self.__model_list = model_list
liukaiwen's avatar
liukaiwen committed
67
        self.__docs = docs
kernel.h@qq.com's avatar
kernel.h@qq.com committed
68
        self.__fix_axis()
69
        self.__fix_by_confidence()
liukaiwen's avatar
liukaiwen committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83

    def __reduct_overlap(self, bboxes):
        N = len(bboxes)
        keep = [True] * N
        for i in range(N):
            for j in range(N):
                if i == j:
                    continue
                if _is_in(bboxes[i], bboxes[j]):
                    keep[i] = False

        return [bboxes[i] for i in range(N) if keep[i]]

    def __tie_up_category_by_distance(
84
        self, page_no, subject_category_id, object_category_id
liukaiwen's avatar
liukaiwen committed
85
86
87
88
89
    ):
        """
        假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject
        """
        ret = []
90
        MAX_DIS_OF_POINT = 10**9 + 7
liukaiwen's avatar
liukaiwen committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

        subjects = self.__reduct_overlap(
            list(
                map(
                    lambda x: x["bbox"],
                    filter(
                        lambda x: x["category_id"] == subject_category_id,
                        self.__model_list[page_no]["layout_dets"],
                    ),
                )
            )
        )

        objects = self.__reduct_overlap(
            list(
                map(
                    lambda x: x["bbox"],
                    filter(
                        lambda x: x["category_id"] == object_category_id,
                        self.__model_list[page_no]["layout_dets"],
                    ),
                )
            )
        )
        subject_object_relation_map = {}

        subjects.sort(key=lambda x: x[0] ** 2 + x[1] ** 2)  # get the distance !

        all_bboxes = []

        for v in subjects:
            all_bboxes.append({"category_id": subject_category_id, "bbox": v})

        for v in objects:
            all_bboxes.append({"category_id": object_category_id, "bbox": v})

        N = len(all_bboxes)
        dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]

        for i in range(N):
            for j in range(i):
                if (
133
134
                    all_bboxes[i]["category_id"] == subject_category_id
                    and all_bboxes[j]["category_id"] == subject_category_id
liukaiwen's avatar
liukaiwen committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
                ):
                    continue

                dis[i][j] = bbox_distance(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"])
                dis[j][i] = dis[i][j]

        used = set()
        for i in range(N):
            # 求第 i 个 subject 所关联的 object
            if all_bboxes[i]["category_id"] != subject_category_id:
                continue
            seen = set()
            candidates = []
            arr = []
            for j in range(N):

                pos_flag_count = sum(
                    list(
                        map(
                            lambda x: 1 if x else 0,
                            bbox_relative_pos(
                                all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
                            ),
                        )
                    )
                )
                if pos_flag_count > 1:
                    continue
                if (
164
165
166
                    all_bboxes[j]["category_id"] != object_category_id
                    or j in used
                    or dis[i][j] == MAX_DIS_OF_POINT
liukaiwen's avatar
liukaiwen committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
                ):
                    continue
                arr.append((dis[i][j], j))

            arr.sort(key=lambda x: x[0])
            if len(arr) > 0:
                candidates.append(arr[0][1])
                seen.add(arr[0][1])

            # 已经获取初始种子
            for j in set(candidates):
                tmp = []
                for k in range(i + 1, N):
                    pos_flag_count = sum(
                        list(
                            map(
                                lambda x: 1 if x else 0,
                                bbox_relative_pos(
                                    all_bboxes[j]["bbox"], all_bboxes[k]["bbox"]
                                ),
                            )
                        )
                    )

                    if pos_flag_count > 1:
                        continue

                    if (
195
196
197
198
                        all_bboxes[k]["category_id"] != object_category_id
                        or k in used
                        or k in seen
                        or dis[j][k] == MAX_DIS_OF_POINT
liukaiwen's avatar
liukaiwen committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
                    ):
                        continue
                    is_nearest = True
                    for l in range(i + 1, N):
                        if l in (j, k) or l in used or l in seen:
                            continue

                        if not float_gt(dis[l][k], dis[j][k]):
                            is_nearest = False
                            break

                    if is_nearest:
                        tmp.append(k)
                        seen.add(k)

                candidates = tmp
                if len(candidates) == 0:
                    break

            # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
            # 先扩一下 bbox,
            x0s = [all_bboxes[idx]["bbox"][0] for idx in seen] + [
                all_bboxes[i]["bbox"][0]
            ]
            y0s = [all_bboxes[idx]["bbox"][1] for idx in seen] + [
                all_bboxes[i]["bbox"][1]
            ]
            x1s = [all_bboxes[idx]["bbox"][2] for idx in seen] + [
                all_bboxes[i]["bbox"][2]
            ]
            y1s = [all_bboxes[idx]["bbox"][3] for idx in seen] + [
                all_bboxes[i]["bbox"][3]
            ]

            ox0, oy0, ox1, oy1 = min(x0s), min(y0s), max(x1s), max(y1s)
            ix0, iy0, ix1, iy1 = all_bboxes[i]["bbox"]

            # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
            caption_poses = [
                [ox0, oy0, ix0, oy1],
                [ox0, oy0, ox1, iy0],
                [ox0, iy1, ox1, oy1],
                [ix1, oy0, ox1, oy1],
            ]

            caption_areas = []
            for bbox in caption_poses:
                embed_arr = []
                for idx in seen:
248
                    if calculate_overlap_area_in_bbox1_area_ratio(all_bboxes[idx]["bbox"], bbox) > CAPATION_OVERLAP_AREA_RATIO:
liukaiwen's avatar
liukaiwen committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
                        embed_arr.append(idx)

                if len(embed_arr) > 0:
                    embed_x0 = min([all_bboxes[idx]["bbox"][0] for idx in embed_arr])
                    embed_y0 = min([all_bboxes[idx]["bbox"][1] for idx in embed_arr])
                    embed_x1 = max([all_bboxes[idx]["bbox"][2] for idx in embed_arr])
                    embed_y1 = max([all_bboxes[idx]["bbox"][3] for idx in embed_arr])
                    caption_areas.append(
                        int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
                    )
                else:
                    caption_areas.append(0)

            subject_object_relation_map[i] = []
            if max(caption_areas) > 0:
                max_area_idx = caption_areas.index(max(caption_areas))
                caption_bbox = caption_poses[max_area_idx]

                for j in seen:
268
                    if calculate_overlap_area_in_bbox1_area_ratio(all_bboxes[j]["bbox"], caption_bbox) > CAPATION_OVERLAP_AREA_RATIO:
liukaiwen's avatar
liukaiwen committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
                        used.add(j)
                        subject_object_relation_map[i].append(j)

        for i in sorted(subject_object_relation_map.keys()):
            result = {
                "subject_body": all_bboxes[i]["bbox"],
                "all": all_bboxes[i]["bbox"],
            }

            if len(subject_object_relation_map[i]) > 0:
                x0 = min(
                    [all_bboxes[j]["bbox"][0] for j in subject_object_relation_map[i]]
                )
                y0 = min(
                    [all_bboxes[j]["bbox"][1] for j in subject_object_relation_map[i]]
                )
                x1 = max(
                    [all_bboxes[j]["bbox"][2] for j in subject_object_relation_map[i]]
                )
                y1 = max(
                    [all_bboxes[j]["bbox"][3] for j in subject_object_relation_map[i]]
                )
                result["object_body"] = [x0, y0, x1, y1]
                result["all"] = [
                    min(x0, all_bboxes[i]["bbox"][0]),
                    min(y0, all_bboxes[i]["bbox"][1]),
                    max(x1, all_bboxes[i]["bbox"][2]),
                    max(y1, all_bboxes[i]["bbox"][3]),
                ]
            ret.append(result)

        total_subject_object_dis = 0
        # 计算已经配对的 distance 距离
        for i in subject_object_relation_map.keys():
            for j in subject_object_relation_map[i]:
                total_subject_object_dis += bbox_distance(
                    all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
                )

        # 计算未匹配的 subject 和 object 的距离(非精确版)
        with_caption_subject = set(
            [
                key
                for key in subject_object_relation_map.keys()
                if len(subject_object_relation_map[i]) > 0
            ]
        )
        for i in range(N):
            if all_bboxes[i]["category_id"] != object_category_id or i in used:
                continue
            candidates = []
            for j in range(N):
                if (
322
323
                    all_bboxes[j]["category_id"] != subject_category_id
                    or j in with_caption_subject
liukaiwen's avatar
liukaiwen committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
                ):
                    continue
                candidates.append((dis[i][j], j))
            if len(candidates) > 0:
                candidates.sort(key=lambda x: x[0])
                total_subject_object_dis += candidates[0][1]
                with_caption_subject.add(j)
        return ret, total_subject_object_dis

    def get_imgs(self, page_no: int):  # @许瑞
        records, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
        return [
            {
                "bbox": record["all"],
                "img_body_bbox": record["subject_body"],
                "img_caption_bbox": record.get("object_body", None),
            }
            for record in records
        ]

    def get_tables(
345
        self, page_no: int
liukaiwen's avatar
liukaiwen committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    ) -> list:  # 3个坐标, caption, table主体,table-note
        with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
        with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
        ret = []
        N, M = len(with_captions), len(with_footnotes)
        assert N == M
        for i in range(N):
            record = {
                "table_caption_bbox": with_captions[i].get("object_body", None),
                "table_body_bbox": with_captions[i]["subject_body"],
                "table_footnote_bbox": with_footnotes[i].get("object_body", None),
            }

            x0 = min(with_captions[i]["all"][0], with_footnotes[i]["all"][0])
            y0 = min(with_captions[i]["all"][1], with_footnotes[i]["all"][1])
            x1 = max(with_captions[i]["all"][2], with_footnotes[i]["all"][2])
            y1 = max(with_captions[i]["all"][3], with_footnotes[i]["all"][3])
            record["bbox"] = [x0, y0, x1, y1]
            ret.append(record)
        return ret

    def get_equations(self, page_no: int) -> list:  # 有坐标,也有字
368
369
370
371
372
373
374
375
376
        inline_equations = self.__get_blocks_by_type(
            ModelBlockTypeEnum.EMBEDDING.value, page_no, ["latex"]
        )
        interline_equations = self.__get_blocks_by_type(
            ModelBlockTypeEnum.ISOLATED.value, page_no, ["latex"]
        )
        interline_equations_blocks = self.__get_blocks_by_type(
            ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no
        )
liukaiwen's avatar
liukaiwen committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
        return inline_equations, interline_equations, interline_equations_blocks

    def get_discarded(self, page_no: int) -> list:  # 自研模型,只有坐标
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
        return blocks

    def get_text_blocks(self, page_no: int) -> list:  # 自研模型搞的,只有坐标,没有字
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
        return blocks

    def get_title_blocks(self, page_no: int) -> list:  # 自研模型,只有坐标,没字
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
        return blocks

    def get_ocr_text(self, page_no: int) -> list:  # paddle 搞的,有字也有坐标
        text_spans = []
        model_page_info = self.__model_list[page_no]
        layout_dets = model_page_info["layout_dets"]
        for layout_det in layout_dets:
            if layout_det["category_id"] == "15":
                span = {
398
                    "bbox": layout_det["bbox"],
liukaiwen's avatar
liukaiwen committed
399
400
401
402
403
404
405
406
407
408
409
410
                    "content": layout_det["text"],
                }
                text_spans.append(span)
        return text_spans

    def get_all_spans(self, page_no: int) -> list:
        all_spans = []
        model_page_info = self.__model_list[page_no]
        layout_dets = model_page_info["layout_dets"]
        allow_category_id_list = [3, 5, 13, 14, 15]
        """当成span拼接的"""
        #  3: 'image', # 图片
411
        #  5: 'table',       # 表格
liukaiwen's avatar
liukaiwen committed
412
413
414
415
416
417
        #  13: 'inline_equation',     # 行内公式
        #  14: 'interline_equation',      # 行间公式
        #  15: 'text',      # ocr识别文本
        for layout_det in layout_dets:
            category_id = layout_det["category_id"]
            if category_id in allow_category_id_list:
418
                span = {"bbox": layout_det["bbox"]}
liukaiwen's avatar
liukaiwen committed
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
                if category_id == 3:
                    span["type"] = ContentType.Image
                elif category_id == 5:
                    span["type"] = ContentType.Table
                elif category_id == 13:
                    span["content"] = layout_det["latex"]
                    span["type"] = ContentType.InlineEquation
                elif category_id == 14:
                    span["content"] = layout_det["latex"]
                    span["type"] = ContentType.InterlineEquation
                elif category_id == 15:
                    span["content"] = layout_det["text"]
                    span["type"] = ContentType.Text
                all_spans.append(span)
        return all_spans

    def get_page_size(self, page_no: int):  # 获取页面宽高
        # 获取当前页的page对象
        page = self.__docs[page_no]
        # 获取当前页的宽高
        page_w = page.rect.width
        page_h = page.rect.height
        return page_w, page_h

443
444
445
    def __get_blocks_by_type(
        self, type: int, page_no: int, extra_col: list[str] = []
    ) -> list:
liukaiwen's avatar
liukaiwen committed
446
447
448
449
450
451
452
453
454
455
456
        blocks = []
        for page_dict in self.__model_list:
            layout_dets = page_dict.get("layout_dets", [])
            page_info = page_dict.get("page_info", {})
            page_number = page_info.get("page_no", -1)
            if page_no != page_number:
                continue
            for item in layout_dets:
                category_id = item.get("category_id", -1)
                bbox = item.get("bbox", None)

liukaiwen's avatar
liukaiwen committed
457
                if category_id == type:
458
                    block = {"bbox": bbox}
liukaiwen's avatar
liukaiwen committed
459
460
461
462
463
                    for col in extra_col:
                        block[col] = item.get(col, None)
                    blocks.append(block)
        return blocks

464
465
466
    def get_model_list(self, page_no):
        return self.__model_list[page_no]

467

liukaiwen's avatar
liukaiwen committed
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
if __name__ == "__main__":
    drw = DiskReaderWriter(r"D:/project/20231108code-clean")
    if 0:
        pdf_file_path = r"linshixuqiu\19983-00.pdf"
        model_file_path = r"linshixuqiu\19983-00_new.json"
        pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
        model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
        model_list = json.loads(model_json_txt)
        write_path = r"D:\project\20231108code-clean\linshixuqiu\19983-00"
        img_bucket_path = "imgs"
        img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
        pdf_docs = fitz.open("pdf", pdf_bytes)
        magic_model = MagicModel(model_list, pdf_docs)

    if 1:
        model_list = json.loads(
            drw.read("/opt/data/pdf/20240418/j.chroma.2009.03.042.json")
        )
        pdf_bytes = drw.read(
            "/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf", AbsReaderWriter.MODE_BIN
        )
        pdf_docs = fitz.open("pdf", pdf_bytes)
        magic_model = MagicModel(model_list, pdf_docs)
        for i in range(7):
            print(magic_model.get_imgs(i))