boost_with_cuda.rst 8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

Boost With Cuda 
================


If your device supports CUDA and meets the GPU requirements of the
mainline environment, you can use GPU acceleration. Please select the
appropriate guide based on your system:

-  :ref:`ubuntu_22_04_lts_section`
-  :ref:`windows_10_or_11_section`

-  Quick Deployment with Docker > Docker requires a GPU with at least
   16GB of VRAM, and all acceleration features are enabled by default.

.. note:: 

   Before running this Docker, you can use the following command to
   check if your device supports CUDA acceleration on Docker. 

   bash  docker run --rm --gpus=all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi

.. code:: sh

   wget https://github.com/opendatalab/MinerU/raw/master/Dockerfile
   docker build -t mineru:latest .
   docker run --rm -it --gpus=all mineru:latest /bin/bash
   magic-pdf --help

.. _ubuntu_22_04_lts_section:

Ubuntu 22.04 LTS
-----------------

1. Check if NVIDIA Drivers Are Installed
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. code:: sh

   nvidia-smi

If you see information similar to the following, it means that the
NVIDIA drivers are already installed, and you can skip Step 2.

Notice:``CUDA Version`` should be >= 12.1, If the displayed version
number is less than 12.1, please upgrade the driver.

.. code:: text

   +---------------------------------------------------------------------------------------+
   | NVIDIA-SMI 537.34                 Driver Version: 537.34       CUDA Version: 12.2     |
   |-----------------------------------------+----------------------+----------------------+
   | GPU  Name                     TCC/WDDM  | Bus-Id        Disp.A | Volatile Uncorr. ECC |
   | Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
   |                                         |                      |               MIG M. |
   |=========================================+======================+======================|
   |   0  NVIDIA GeForce RTX 3060 Ti   WDDM  | 00000000:01:00.0  On |                  N/A |
   |  0%   51C    P8              12W / 200W |   1489MiB /  8192MiB |      5%      Default |
   |                                         |                      |                  N/A |
   +-----------------------------------------+----------------------+----------------------+

2. Install the Driver
~~~~~~~~~~~~~~~~~~~~~

If no driver is installed, use the following command:

.. code:: sh

   sudo apt-get update
   sudo apt-get install nvidia-driver-545

Install the proprietary driver and restart your computer after
installation.

.. code:: sh

   reboot

3. Install Anaconda
~~~~~~~~~~~~~~~~~~~

If Anaconda is already installed, skip this step.

.. code:: sh

   wget https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh
   bash Anaconda3-2024.06-1-Linux-x86_64.sh

In the final step, enter ``yes``, close the terminal, and reopen it.

4. Create an Environment Using Conda
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Specify Python version 3.10.

.. code:: sh

   conda create -n MinerU python=3.10
   conda activate MinerU

5. Install Applications
~~~~~~~~~~~~~~~~~~~~~~~

.. code:: sh

   pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com

❗ After installation, make sure to check the version of ``magic-pdf``
using the following command:

.. code:: sh

   magic-pdf --version

If the version number is less than 0.7.0, please report the issue.

6. Download Models
~~~~~~~~~~~~~~~~~~

Refer to detailed instructions on :doc:`download_model_weight_files`

7. Understand the Location of the Configuration File
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

After completing the `6. Download Models <#6-download-models>`__ step,
the script will automatically generate a ``magic-pdf.json`` file in the
user directory and configure the default model path. You can find the
``magic-pdf.json`` file in your user directory.

   The user directory for Linux is “/home/username”.

8. First Run
~~~~~~~~~~~~

Download a sample file from the repository and test it.

.. code:: sh

   wget https://github.com/opendatalab/MinerU/raw/master/demo/small_ocr.pdf
xu rui's avatar
xu rui committed
140
   magic-pdf -p small_ocr.pdf -o ./output
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

9. Test CUDA Acceleration
~~~~~~~~~~~~~~~~~~~~~~~~~

If your graphics card has at least **8GB** of VRAM, follow these steps
to test CUDA acceleration:

1. Modify the value of ``"device-mode"`` in the ``magic-pdf.json``
   configuration file located in your home directory.

   .. code:: json

      {
        "device-mode": "cuda"
      }

2. Test CUDA acceleration with the following command:

   .. code:: sh

xu rui's avatar
xu rui committed
161
      magic-pdf -p small_ocr.pdf -o ./output
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

10. Enable CUDA Acceleration for OCR
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1. Download ``paddlepaddle-gpu``. Installation will automatically enable
   OCR acceleration.

   .. code:: sh

      python -m pip install paddlepaddle-gpu==3.0.0b1 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/

2. Test OCR acceleration with the following command:

   .. code:: sh

xu rui's avatar
xu rui committed
177
178
179
      magic-pdf -p small_ocr.pdf -o ./output


180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

.. _windows_10_or_11_section:

Windows 10/11
--------------

1. Install CUDA and cuDNN
~~~~~~~~~~~~~~~~~~~~~~~~~

Required versions: CUDA 11.8 + cuDNN 8.7.0

-  CUDA 11.8: https://developer.nvidia.com/cuda-11-8-0-download-archive
-  cuDNN v8.7.0 (November 28th, 2022), for CUDA 11.x:
   https://developer.nvidia.com/rdp/cudnn-archive

2. Install Anaconda
~~~~~~~~~~~~~~~~~~~

If Anaconda is already installed, you can skip this step.

Download link: https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Windows-x86_64.exe

3. Create an Environment Using Conda
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Python version must be 3.10.

::

   conda create -n MinerU python=3.10
   conda activate MinerU

4. Install Applications
~~~~~~~~~~~~~~~~~~~~~~~

::

   pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com

..

   ❗️After installation, verify the version of ``magic-pdf``:

   .. code:: bash

      magic-pdf --version

   If the version number is less than 0.7.0, please report it in the
   issues section.

5. Download Models
~~~~~~~~~~~~~~~~~~

Refer to detailed instructions on :doc:`download_model_weight_files`

6. Understand the Location of the Configuration File
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

After completing the `5. Download Models <#5-download-models>`__ step,
the script will automatically generate a ``magic-pdf.json`` file in the
user directory and configure the default model path. You can find the
``magic-pdf.json`` file in your 【user directory】 .

   The user directory for Windows is “C:/Users/username”.

7. First Run
~~~~~~~~~~~~

Download a sample file from the repository and test it.

.. code:: powershell

     wget https://github.com/opendatalab/MinerU/raw/master/demo/small_ocr.pdf -O small_ocr.pdf
xu rui's avatar
xu rui committed
253
     magic-pdf -p small_ocr.pdf -o ./output
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

8. Test CUDA Acceleration
~~~~~~~~~~~~~~~~~~~~~~~~~

If your graphics card has at least 8GB of VRAM, follow these steps to
test CUDA-accelerated parsing performance.

1. **Overwrite the installation of torch and torchvision** supporting
   CUDA.

   ::

      pip install --force-reinstall torch==2.3.1 torchvision==0.18.1 --index-url https://download.pytorch.org/whl/cu118

   ..

      ❗️Ensure the following versions are specified in the command:

      ::

         torch==2.3.1 torchvision==0.18.1

      These are the highest versions we support. Installing higher
      versions without specifying them will cause the program to fail.

2. **Modify the value of ``"device-mode"``** in the ``magic-pdf.json``
   configuration file located in your user directory.

   .. code:: json

      {
        "device-mode": "cuda"
      }

3. **Run the following command to test CUDA acceleration**:

   ::

xu rui's avatar
xu rui committed
292
      magic-pdf -p small_ocr.pdf -o ./output
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

9. Enable CUDA Acceleration for OCR
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1. **Download paddlepaddle-gpu**, which will automatically enable OCR
   acceleration upon installation.

   ::

      pip install paddlepaddle-gpu==2.6.1

2. **Run the following command to test OCR acceleration**:

   ::

xu rui's avatar
xu rui committed
308
      magic-pdf -p small_ocr.pdf -o ./output