model_utils.py 9.65 KB
Newer Older
1
2
3
import time
import torch
from loguru import logger
4
import numpy as np
5
6
7
from magic_pdf.libs.clean_memory import clean_memory


8
9
def crop_img(input_res, input_np_img, crop_paste_x=0, crop_paste_y=0):

10
11
    crop_xmin, crop_ymin = int(input_res['poly'][0]), int(input_res['poly'][1])
    crop_xmax, crop_ymax = int(input_res['poly'][4]), int(input_res['poly'][5])
12
13

    # Calculate new dimensions
14
15
16
    crop_new_width = crop_xmax - crop_xmin + crop_paste_x * 2
    crop_new_height = crop_ymax - crop_ymin + crop_paste_y * 2

17
18
19
20
21
22
23
24
25
26
27
28
    # Create a white background array
    return_image = np.ones((crop_new_height, crop_new_width, 3), dtype=np.uint8) * 255

    # Crop the original image using numpy slicing
    cropped_img = input_np_img[crop_ymin:crop_ymax, crop_xmin:crop_xmax]

    # Paste the cropped image onto the white background
    return_image[crop_paste_y:crop_paste_y + (crop_ymax - crop_ymin),
    crop_paste_x:crop_paste_x + (crop_xmax - crop_xmin)] = cropped_img

    return_list = [crop_paste_x, crop_paste_y, crop_xmin, crop_ymin, crop_xmax, crop_ymax, crop_new_width,
                   crop_new_height]
29
30
31
    return return_image, return_list


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
def get_coords_and_area(table):
    """Extract coordinates and area from a table."""
    xmin, ymin = int(table['poly'][0]), int(table['poly'][1])
    xmax, ymax = int(table['poly'][4]), int(table['poly'][5])
    area = (xmax - xmin) * (ymax - ymin)
    return xmin, ymin, xmax, ymax, area


def calculate_intersection(box1, box2):
    """Calculate intersection coordinates between two boxes."""
    intersection_xmin = max(box1[0], box2[0])
    intersection_ymin = max(box1[1], box2[1])
    intersection_xmax = min(box1[2], box2[2])
    intersection_ymax = min(box1[3], box2[3])

    # Check if intersection is valid
    if intersection_xmax <= intersection_xmin or intersection_ymax <= intersection_ymin:
        return None

    return intersection_xmin, intersection_ymin, intersection_xmax, intersection_ymax


def calculate_iou(box1, box2):
    """Calculate IoU between two boxes."""
    intersection = calculate_intersection(box1[:4], box2[:4])

    if not intersection:
        return 0

    intersection_xmin, intersection_ymin, intersection_xmax, intersection_ymax = intersection
    intersection_area = (intersection_xmax - intersection_xmin) * (intersection_ymax - intersection_ymin)

    area1, area2 = box1[4], box2[4]
    union_area = area1 + area2 - intersection_area

    return intersection_area / union_area if union_area > 0 else 0


def is_inside(small_box, big_box, overlap_threshold=0.8):
    """Check if small_box is inside big_box by at least overlap_threshold."""
    intersection = calculate_intersection(small_box[:4], big_box[:4])

    if not intersection:
        return False

    intersection_xmin, intersection_ymin, intersection_xmax, intersection_ymax = intersection
    intersection_area = (intersection_xmax - intersection_xmin) * (intersection_ymax - intersection_ymin)

    # Check if overlap exceeds threshold
    return intersection_area >= overlap_threshold * small_box[4]


def do_overlap(box1, box2):
    """Check if two boxes overlap."""
    return calculate_intersection(box1[:4], box2[:4]) is not None


def merge_high_iou_tables(table_res_list, layout_res, table_indices, iou_threshold=0.7):
    """Merge tables with IoU > threshold."""
    if len(table_res_list) < 2:
        return table_res_list, table_indices

    table_info = [get_coords_and_area(table) for table in table_res_list]
    merged = True

    while merged:
        merged = False
        i = 0
        while i < len(table_res_list) - 1:
            j = i + 1
            while j < len(table_res_list):
                iou = calculate_iou(table_info[i], table_info[j])

                if iou > iou_threshold:
                    # Merge tables by taking their union
                    x1_min, y1_min, x1_max, y1_max, _ = table_info[i]
                    x2_min, y2_min, x2_max, y2_max, _ = table_info[j]

                    union_xmin = min(x1_min, x2_min)
                    union_ymin = min(y1_min, y2_min)
                    union_xmax = max(x1_max, x2_max)
                    union_ymax = max(y1_max, y2_max)

                    # Create merged table
                    merged_table = table_res_list[i].copy()
                    merged_table['poly'][0] = union_xmin
                    merged_table['poly'][1] = union_ymin
                    merged_table['poly'][2] = union_xmax
                    merged_table['poly'][3] = union_ymin
                    merged_table['poly'][4] = union_xmax
                    merged_table['poly'][5] = union_ymax
                    merged_table['poly'][6] = union_xmin
                    merged_table['poly'][7] = union_ymax

                    # Update layout_res
                    to_remove = [table_indices[j], table_indices[i]]
                    for idx in sorted(to_remove, reverse=True):
                        del layout_res[idx]
                    layout_res.append(merged_table)

                    # Update tracking lists
                    table_indices = [k if k < min(to_remove) else
                                     k - 1 if k < max(to_remove) else
                                     k - 2 if k > max(to_remove) else
                                     len(layout_res) - 1
                                     for k in table_indices
                                     if k not in to_remove]
                    table_indices.append(len(layout_res) - 1)

                    # Update table lists
                    table_res_list.pop(j)
                    table_res_list.pop(i)
                    table_res_list.append(merged_table)

                    # Update table_info
                    table_info = [get_coords_and_area(table) for table in table_res_list]

                    merged = True
                    break
                j += 1

            if merged:
                break
            i += 1

    return table_res_list, table_indices


def filter_nested_tables(table_res_list, overlap_threshold=0.8, area_threshold=0.8):
    """Remove big tables containing multiple smaller tables within them."""
    if len(table_res_list) < 3:
        return table_res_list

    table_info = [get_coords_and_area(table) for table in table_res_list]
    big_tables_idx = []

    for i in range(len(table_res_list)):
        # Find tables inside this one
        tables_inside = [j for j in range(len(table_res_list))
                         if i != j and is_inside(table_info[j], table_info[i], overlap_threshold)]

        # Continue if there are at least 2 tables inside
        if len(tables_inside) >= 2:
            # Check if inside tables overlap with each other
            tables_overlap = any(do_overlap(table_info[tables_inside[idx1]], table_info[tables_inside[idx2]])
                                 for idx1 in range(len(tables_inside))
                                 for idx2 in range(idx1 + 1, len(tables_inside)))

            # If no overlaps, check area condition
            if not tables_overlap:
                total_inside_area = sum(table_info[j][4] for j in tables_inside)
                big_table_area = table_info[i][4]

                if total_inside_area > area_threshold * big_table_area:
                    big_tables_idx.append(i)

    return [table for i, table in enumerate(table_res_list) if i not in big_tables_idx]


def get_res_list_from_layout_res(layout_res, iou_threshold=0.7, overlap_threshold=0.8, area_threshold=0.8):
    """Extract OCR, table and other regions from layout results."""
193
194
    ocr_res_list = []
    table_res_list = []
195
    table_indices = []
196
    single_page_mfdetrec_res = []
197
198
199
200
201
202

    # Categorize regions
    for i, res in enumerate(layout_res):
        category_id = int(res['category_id'])

        if category_id in [13, 14]:  # Formula regions
203
204
205
206
            single_page_mfdetrec_res.append({
                "bbox": [int(res['poly'][0]), int(res['poly'][1]),
                         int(res['poly'][4]), int(res['poly'][5])],
            })
207
        elif category_id in [0, 1, 2, 4, 6, 7]:  # OCR regions
208
            ocr_res_list.append(res)
209
        elif category_id == 5:  # Table regions
210
            table_res_list.append(res)
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
            table_indices.append(i)

    # Process tables: merge high IoU tables first, then filter nested tables
    table_res_list, table_indices = merge_high_iou_tables(
        table_res_list, layout_res, table_indices, iou_threshold)

    filtered_table_res_list = filter_nested_tables(
        table_res_list, overlap_threshold, area_threshold)

    # Remove filtered out tables from layout_res
    if len(filtered_table_res_list) < len(table_res_list):
        kept_tables = set(id(table) for table in filtered_table_res_list)
        to_remove = [table_indices[i] for i, table in enumerate(table_res_list)
                     if id(table) not in kept_tables]

        for idx in sorted(to_remove, reverse=True):
            del layout_res[idx]

    return ocr_res_list, filtered_table_res_list, single_page_mfdetrec_res
230
231
232


def clean_vram(device, vram_threshold=8):
233
    total_memory = get_vram(device)
234
    if total_memory and total_memory <= vram_threshold:
235
        gc_start = time.time()
236
        clean_memory(device)
237
238
239
240
241
        gc_time = round(time.time() - gc_start, 2)
        logger.info(f"gc time: {gc_time}")


def get_vram(device):
242
    if torch.cuda.is_available() and str(device).startswith("cuda"):
243
        total_memory = torch.cuda.get_device_properties(device).total_memory / (1024 ** 3)  # 将字节转换为 GB
244
        return total_memory
245
246
    elif str(device).startswith("npu"):
        import torch_npu
247
248
        if torch_npu.npu.is_available():
            total_memory = torch_npu.npu.get_device_properties(device).total_memory / (1024 ** 3)  # 转为 GB
249
250
251
            return total_memory
    else:
        return None