README_zh-CN_v2.md 8.36 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
<div align="center">
<!-- logo -->
<p align="center">
  <img src="docs/images/MinerU-logo.png" width="300px" style="vertical-align:middle;">
</p>


<!-- icon -->
[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![PyPI version](https://badge.fury.io/py/magic-pdf.svg)](https://badge.fury.io/py/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf)
<a href="https://trendshift.io/repositories/11174" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11174" alt="opendatalab%2FMinerU | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>

<!-- language -->
[English](README.md) | [简体中文](README_zh-CN.md) | [日本語](README_ja-JP.md)


<!-- hot link -->
<p align="center">
<a href="https://github.com/opendatalab/MinerU">MinerU: 端到端的PDF解析工具(基于PDF-Extract-Kit)支持PDF转Markdown</a>🚀🚀🚀<br>
<a href="https://github.com/opendatalab/PDF-Extract-Kit">PDF-Extract-Kit: 高质量PDF解析工具箱</a>🔥🔥🔥
</p>

<!-- join us -->
<p align="center">
    👋 join us on <a href="https://discord.gg/AsQMhuMN" target="_blank">Discord</a> and <a href="https://cdn.vansin.top/internlm/mineru.jpg" target="_blank">WeChat</a>
</p>

</div>


# 更新记录

- 2024/07/18 首次开源


<!-- TABLE OF CONTENT -->
<details open="open">
  <summary><h2 style="display: inline-block">文档目录</h2></summary>
  <ol>
    <li>
      <a href="#mineru">MinerU</a>
      <ul>
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
        <li><a href="#项目简介">项目简介</a></li>
        <li><a href="#主要功能">主要功能</a></li>
        <li><a href="#快速开始">快速开始</a>
            <ul>
            <li><a href="#在线体验">在线体验</a></li>
            <li><a href="#使用cpu快速体验">使用CPU快速体验</a></li>
            <li><a href="#使用gpu">使用GPU</a></li>
            </ul>
        </li>
        <li><a href="#使用">使用</a>
            <ul>
            <li><a href="#命令行">命令行</a></li>
            <li><a href="#api">API</a></li>
            <li><a href="#二次开发">二次开发指南</a></li>
            </ul>
        </li>
64
65
      </ul>
    </li>
66
    <li><a href="#todo">TODO List</a></li>
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    <li><a href="#known-issue">Known Issue</a></li>
    <li><a href="#faq">FAQ</a></li>
    <li><a href="#all-thanks-to-our-contributors">Contributors</a></li>
    <li><a href="#license-information">License Information</a></li>
    <li><a href="#acknowledgments">Acknowledgements</a></li>
    <li><a href="#citation">Citation</a></li>
    <li><a href="#star-history">Star History</a></li>
    <li><a href="#magic-doc">magic-doc快速提取PPT/DOC/PDF</a></li>
    <li><a href="#magic-html">magic-html提取混合网页内容</a></li>
    <li><a href="#links">Links</a></li>
  </ol>
</details>



# MinerU
83
84
85
## 项目简介
MinerU是一款将PDF转化为机器可读格式的工具(如markdown、json),可以很方便地抽取为任意格式。
MinerU诞生于[书生-浦语](https://github.com/InternLM/InternLM)的预训练过程中,我们将会集中精力解决科技文献中的符号转化问题,以此在大模型时代推动人类科技的发展。
86

87
## 主要功能
88
89
90
91
92
93
94
95
96
97
98

- 删除页眉、页脚、脚注、页码等元素,保持语义连贯
- 符合人类阅读顺序的排版格式
- 保留原文档的结构和格式,包括标题、段落、列表等
- 提取图像、图片标题、表格、表格标题
- 自动识别文档中的公式并将公式转换成latex
- 乱码PDF自动检测并启用OCR
- 支持CPU和GPU环境
- 支持windows/linux/mac平台


99
## 快速开始
100
101
102
103
104
105
106
107

如果遇到任何问题,请先查询<a href="#faq">FAQ</a>
如果遇到效果不及预期,查询<a href="#known-issue">Known Issue</a>
有3种不同方式可以体验MinerU的效果:
- 在线体验
- 使用CPU快速体验(Windows,Linux,Mac)
- Linux/Windows + GPU

108
### 在线体验
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

[在线体验点击这里](TODO)

### 使用CPU快速体验

```bash
 command to install magic-pdf[full]
```


### 使用GPU
- [ubuntu22.04 + GPU]()
- [windows10/11 + GPU]()


124
## 使用
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

### 命令行

TODO

### API

处理本地磁盘上的文件
```python
image_writer = DiskReaderWriter(local_image_dir)
image_dir = str(os.path.basename(local_image_dir))
jso_useful_key = {"_pdf_type": "", "model_list": model_json}
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

处理对象存储上的文件
```python
s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint)
image_dir = "s3://img_bucket/"
s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir)
pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN)
jso_useful_key = {"_pdf_type": "", "model_list": model_json}
pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli)
pipe.pipe_classify()
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

详细实现可参考 
- [demo.py 最简单的处理方式](demo/demo.py)
- [magic_pdf_parse_main.py 能够更清晰看到处理流程](demo/magic_pdf_parse_main.py)


### 二次开发

TODO

# TODO

167
168
169
170
171
172
173
174
- [ ] 基于语义的阅读顺序
- [ ] 正文中列表识别
- [ ] 正文中代码块识别
- [ ] 目录识别
- [ ] 表格识别
- [ ] 化学式识别
- [ ] 几何图形识别

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

# Known Issue
- 阅读顺序基于规则的分割,在一些情况下会乱序
- 列表、代码块、目录在layout模型里还没有支持
- 漫画书、艺术图册、小学教材、习题尚不能很好解析

好消息是,这些我们正在努力实现!

# FAQ
[常见问题](docs/FAQ_zh_cn.md)
[FAQ](docs/FAQ.md)


# All Thanks To Our Contributors

<a href="https://github.com/opendatalab/MinerU/graphs/contributors">
  <img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>

# License Information

[LICENSE.md](LICENSE.md)

The project currently leverages PyMuPDF to deliver advanced functionalities; however, its adherence to the AGPL license may impose limitations on certain use cases. In upcoming iterations, we intend to explore and transition to a more permissively licensed PDF processing library to enhance user-friendliness and flexibility.

# Acknowledgments

- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)

# Citation

```bibtex
@article{he2024opendatalab,
  title={Opendatalab: Empowering general artificial intelligence with open datasets},
  author={He, Conghui and Li, Wei and Jin, Zhenjiang and Xu, Chao and Wang, Bin and Lin, Dahua},
  journal={arXiv preprint arXiv:2407.13773},
  year={2024}
}

@misc{2024mineru,
    title={MinerU: A One-stop, Open-source, High-quality Data Extraction Tool},
    author={MinerU Contributors},
    howpublished = {\url{https://github.com/opendatalab/MinerU}},
    year={2024}
}
```

# Star History

<a>
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
 </picture>
</a>

# Magic-doc
[Magic-Doc](https://github.com/InternLM/magic-doc) Fast speed ppt/pptx/doc/docx/pdf extraction tool

# Magic-html
[Magic-HTML](https://github.com/opendatalab/magic-html) Mixed web page extraction tool

# Links

- [LabelU (A Lightweight Multi-modal Data Annotation Tool)](https://github.com/opendatalab/labelU)
- [LabelLLM (An Open-source LLM Dialogue Annotation Platform)](https://github.com/opendatalab/LabelLLM)
- [PDF-Extract-Kit (A Comprehensive Toolkit for High-Quality PDF Content Extraction)](https://github.com/opendatalab/PDF-Extract-Kit)