xycut.py 7.18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from typing import List
import cv2
import numpy as np


def projection_by_bboxes(boxes: np.array, axis: int) -> np.ndarray:
    """
     通过一组 bbox 获得投影直方图,最后以 per-pixel 形式输出

    Args:
        boxes: [N, 4]
        axis: 0-x坐标向水平方向投影, 1-y坐标向垂直方向投影

    Returns:
        1D 投影直方图,长度为投影方向坐标的最大值(我们不需要图片的实际边长,因为只是要找文本框的间隔)

    """
    assert axis in [0, 1]
    length = np.max(boxes[:, axis::2])
    res = np.zeros(length, dtype=int)
    # TODO: how to remove for loop?
    for start, end in boxes[:, axis::2]:
        res[start:end] += 1
    return res


# from: https://dothinking.github.io/2021-06-19-%E9%80%92%E5%BD%92%E6%8A%95%E5%BD%B1%E5%88%86%E5%89%B2%E7%AE%97%E6%B3%95/#:~:text=%E9%80%92%E5%BD%92%E6%8A%95%E5%BD%B1%E5%88%86%E5%89%B2%EF%BC%88Recursive%20XY,%EF%BC%8C%E5%8F%AF%E4%BB%A5%E5%88%92%E5%88%86%E6%AE%B5%E8%90%BD%E3%80%81%E8%A1%8C%E3%80%82
def split_projection_profile(arr_values: np.array, min_value: float, min_gap: float):
    """Split projection profile:

    ```
                              ┌──┐
         arr_values           │  │       ┌─┐───
             ┌──┐             │  │       │ │ |
             │  │             │  │ ┌───┐ │ │min_value
             │  │<- min_gap ->│  │ │   │ │ │ |
         ────┴──┴─────────────┴──┴─┴───┴─┴─┴─┴───
         0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
    ```

    Args:
        arr_values (np.array): 1-d array representing the projection profile.
        min_value (float): Ignore the profile if `arr_value` is less than `min_value`.
        min_gap (float): Ignore the gap if less than this value.

    Returns:
        tuple: Start indexes and end indexes of split groups.
    """
    # all indexes with projection height exceeding the threshold
    arr_index = np.where(arr_values > min_value)[0]
    if not len(arr_index):
        return

    # find zero intervals between adjacent projections
    # |  |                    ||
    # ||||<- zero-interval -> |||||
    arr_diff = arr_index[1:] - arr_index[0:-1]
    arr_diff_index = np.where(arr_diff > min_gap)[0]
    arr_zero_intvl_start = arr_index[arr_diff_index]
    arr_zero_intvl_end = arr_index[arr_diff_index + 1]

    # convert to index of projection range:
    # the start index of zero interval is the end index of projection
    arr_start = np.insert(arr_zero_intvl_end, 0, arr_index[0])
    arr_end = np.append(arr_zero_intvl_start, arr_index[-1])
    arr_end += 1  # end index will be excluded as index slice

    return arr_start, arr_end


def recursive_xy_cut(boxes: np.ndarray, indices: List[int], res: List[int]):
    """

    Args:
        boxes: (N, 4)
        indices: 递归过程中始终表示 box 在原始数据中的索引
        res: 保存输出结果

    """
    # 向 y 轴投影
    assert len(boxes) == len(indices)

    _indices = boxes[:, 1].argsort()
    y_sorted_boxes = boxes[_indices]
    y_sorted_indices = indices[_indices]

    # debug_vis(y_sorted_boxes, y_sorted_indices)

    y_projection = projection_by_bboxes(boxes=y_sorted_boxes, axis=1)
    pos_y = split_projection_profile(y_projection, 0, 1)
    if not pos_y:
        return

    arr_y0, arr_y1 = pos_y
    for r0, r1 in zip(arr_y0, arr_y1):
        # [r0, r1] 表示按照水平切分,有 bbox 的区域,对这些区域会再进行垂直切分
        _indices = (r0 <= y_sorted_boxes[:, 1]) & (y_sorted_boxes[:, 1] < r1)

        y_sorted_boxes_chunk = y_sorted_boxes[_indices]
        y_sorted_indices_chunk = y_sorted_indices[_indices]

        _indices = y_sorted_boxes_chunk[:, 0].argsort()
        x_sorted_boxes_chunk = y_sorted_boxes_chunk[_indices]
        x_sorted_indices_chunk = y_sorted_indices_chunk[_indices]

        # 往 x 方向投影
        x_projection = projection_by_bboxes(boxes=x_sorted_boxes_chunk, axis=0)
        pos_x = split_projection_profile(x_projection, 0, 1)
        if not pos_x:
            continue

        arr_x0, arr_x1 = pos_x
        if len(arr_x0) == 1:
            # x 方向无法切分
            res.extend(x_sorted_indices_chunk)
            continue

        # x 方向上能分开,继续递归调用
        for c0, c1 in zip(arr_x0, arr_x1):
            _indices = (c0 <= x_sorted_boxes_chunk[:, 0]) & (
                x_sorted_boxes_chunk[:, 0] < c1
            )
            recursive_xy_cut(
                x_sorted_boxes_chunk[_indices], x_sorted_indices_chunk[_indices], res
            )


def points_to_bbox(points):
    assert len(points) == 8

    # [x1,y1,x2,y2,x3,y3,x4,y4]
    left = min(points[::2])
    right = max(points[::2])
    top = min(points[1::2])
    bottom = max(points[1::2])

    left = max(left, 0)
    top = max(top, 0)
    right = max(right, 0)
    bottom = max(bottom, 0)
    return [left, top, right, bottom]


def bbox2points(bbox):
    left, top, right, bottom = bbox
    return [left, top, right, top, right, bottom, left, bottom]


def vis_polygon(img, points, thickness=2, color=None):
    br2bl_color = color
    tl2tr_color = color
    tr2br_color = color
    bl2tl_color = color
    cv2.line(
        img,
        (points[0][0], points[0][1]),
        (points[1][0], points[1][1]),
        color=tl2tr_color,
        thickness=thickness,
    )

    cv2.line(
        img,
        (points[1][0], points[1][1]),
        (points[2][0], points[2][1]),
        color=tr2br_color,
        thickness=thickness,
    )

    cv2.line(
        img,
        (points[2][0], points[2][1]),
        (points[3][0], points[3][1]),
        color=br2bl_color,
        thickness=thickness,
    )

    cv2.line(
        img,
        (points[3][0], points[3][1]),
        (points[0][0], points[0][1]),
        color=bl2tl_color,
        thickness=thickness,
    )
    return img


def vis_points(
    img: np.ndarray, points, texts: List[str] = None, color=(0, 200, 0)
) -> np.ndarray:
    """

    Args:
        img:
        points: [N, 8]  8: x1,y1,x2,y2,x3,y3,x3,y4
        texts:
        color:

    Returns:

    """
    points = np.array(points)
    if texts is not None:
        assert len(texts) == points.shape[0]

    for i, _points in enumerate(points):
        vis_polygon(img, _points.reshape(-1, 2), thickness=2, color=color)
        bbox = points_to_bbox(_points)
        left, top, right, bottom = bbox
        cx = (left + right) // 2
        cy = (top + bottom) // 2

        txt = texts[i]
        font = cv2.FONT_HERSHEY_SIMPLEX
        cat_size = cv2.getTextSize(txt, font, 0.5, 2)[0]

        img = cv2.rectangle(
            img,
            (cx - 5 * len(txt), cy - cat_size[1] - 5),
            (cx - 5 * len(txt) + cat_size[0], cy - 5),
            color,
            -1,
        )

        img = cv2.putText(
            img,
            txt,
            (cx - 5 * len(txt), cy - 5),
            font,
            0.5,
            (255, 255, 255),
            thickness=1,
            lineType=cv2.LINE_AA,
        )

    return img


def vis_polygons_with_index(image, points):
    texts = [str(i) for i in range(len(points))]
    res_img = vis_points(image.copy(), points, texts)
    return res_img