markdown_calculate.py 5.09 KB
Newer Older
quyuan's avatar
quyuan committed
1
2
3
4
5
6
7
8
9
10
11
import os  
from Levenshtein import distance  
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction, corpus_bleu
from nltk.tokenize import word_tokenize  
import json 
import re
import scoring
import argparse

# 初始化列表来存储编辑距离和BLEU分数  
class Scoring:
quyuan's avatar
quyuan committed
12
    def __init__(self, result_path):
quyuan's avatar
quyuan committed
13
14
15
16
17
18
        self.edit_distances = []
        self.bleu_scores = []
        self.sim_scores = []
        self.filenames = []
        self.score_dict = {}
        self.anntion_cnt = 0
quyuan's avatar
quyuan committed
19
        self.fw = open(result_path, "w+")
quyuan's avatar
quyuan committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
    def simple_bleu_score(self, candidate, reference):  
        candidate_tokens = word_tokenize(candidate)  
        reference_tokens = word_tokenize(reference) 
        return sentence_bleu([reference_tokens], candidate_tokens, smoothing_function=SmoothingFunction().method1) 


    def preprocess_string(self, s):  
        sub_enter = re.sub(r'\n+', '\n', s)
        return re.sub(r'  ', ' ', sub_enter)
    
    def calculate_similarity(self, annotion, actual, tool_type):
        class_dict = {}
        edit_distances = []
        bleu_scores = []
        sim_scores = list()
        total_file = 0
        for filename in os.listdir(annotion):  
            if filename.endswith('.md') and not filename.startswith('.'):  # 忽略隐藏文件  
                total_file = total_file + 1
                # 读取A目录中的文件  
                with open(os.path.join(annotion, filename), 'r', encoding='utf-8') as file_a:  
                    content_a = file_a.read()
                self.anntion_cnt = self.anntion_cnt + 1
                filepath_b = os.path.join(actual, filename)  
                if os.path.exists(filepath_b):  
                    with open(filepath_b, 'r', encoding='utf-8') as file_b:  
                        content_b = file_b.read()
                        self.filenames.append(filename)
                        # 计算编辑距离
                        edit_dist = distance(self.preprocess_string(content_b),self.preprocess_string(content_a)) / max(len(content_a), len(content_b))
                        self.edit_distances.append(edit_dist)  
                        edit_distances.append(edit_dist)
                        #计算BLUE分数
                        bleu_score = self.simple_bleu_score(content_b, content_a)  
                        bleu_scores.append(bleu_score)
                        self.bleu_scores.append(bleu_score)  
                        #计算marker分数
                        score = scoring.score_text(content_b, content_a)
                        sim_scores.append(score)
                        self.sim_scores.append(score)
                        class_dict[filename] = {"edit_dist": edit_dist, "bleu_score": bleu_score, "sim_score": score}
                        self.score_dict[filename] = {"edit_dist": edit_dist, "bleu_score": bleu_score, "sim_score": score}
                else:  
                    print(f"File {filename} not found in actual directory.")  
        # 计算每类平均值
        class_average_edit_distance = sum(edit_distances) / len(edit_distances) if edit_distances else 0  
        class_average_bleu_score = sum(bleu_scores) / len(bleu_scores) if bleu_scores else 0  
        class_average_sim_score = sum(sim_scores) / len(sim_scores) if sim_scores else 0
quyuan's avatar
quyuan committed
68
        self.fw.write(json.dumps(class_dict, ensure_ascii=False) + "\n")
quyuan's avatar
quyuan committed
69
        ratio = len(class_dict)/total_file
quyuan's avatar
quyuan committed
70
71
72
73
        self.fw.write(f"{tool_type} extract ratio:  {ratio}" + "\n")
        self.fw.write(f"{tool_type} Average Levenshtein Distance: {class_average_edit_distance}" + "\n")
        self.fw.write(f"{tool_type} Average BLEU Score: {class_average_bleu_score}" + "\n")
        self.fw.write(f"{tool_type} Average Sim Score: {class_average_sim_score}" + "\n")
quyuan's avatar
quyuan committed
74
75
76
77
78
79

        print (f"{tool_type} extract ratio: {ratio}")
        print (f"{tool_type} Average Levenshtein Distance: {class_average_edit_distance}")
        print (f"{tool_type} Average BLEU Score: {class_average_bleu_score}")
        print (f"{tool_type} Average Sim Score: {class_average_sim_score}")
        return self.score_dict
quyuan's avatar
quyuan committed
80
    
quyuan's avatar
quyuan committed
81
82
    def summary_scores(self):
         # 计算整体平均值
quyuan's avatar
quyuan committed
83
        over_all_dict = dict()
quyuan's avatar
quyuan committed
84
85
86
        average_edit_distance = sum(self.edit_distances) / len(self.edit_distances) if self.edit_distances else 0  
        average_bleu_score = sum(self.bleu_scores) / len(self.bleu_scores) if self.bleu_scores else 0  
        average_sim_score = sum(self.sim_scores) / len(self.sim_scores) if self.sim_scores else 0
quyuan's avatar
quyuan committed
87
88
89
        over_all_dict["average_edit_distance"] = average_edit_distance
        over_all_dict["average_bleu_score"] = average_bleu_score
        over_all_dict["average_sim_score"] = average_sim_score
quyuan's avatar
quyuan committed
90
        self.fw.write(json.dumps(over_all_dict, ensure_ascii=False) + "\n")
quyuan's avatar
quyuan committed
91
        return over_all_dict
quyuan's avatar
quyuan committed
92
93
94
95
96
97
98

    def calculate_similarity_total(self, tool_type, file_types, download_dir):
        for file_type in file_types:
            annotion = os.path.join(download_dir, file_type, "annotations", "cleaned")
            actual = os.path.join(download_dir, file_type, tool_type, "cleaned")
            self.calculate_similarity(annotion, actual, file_type)