utils.py 5.27 KB
Newer Older
1

icecraft's avatar
icecraft committed
2
3
import multiprocessing as mp
import threading
4
5
import fitz
import numpy as np
6
from loguru import logger
7
8

from magic_pdf.utils.annotations import ImportPIL
icecraft's avatar
icecraft committed
9
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


@ImportPIL
def fitz_doc_to_image(doc, dpi=200) -> dict:
    """Convert fitz.Document to image, Then convert the image to numpy array.

    Args:
        doc (_type_): pymudoc page
        dpi (int, optional): reset the dpi of dpi. Defaults to 200.

    Returns:
        dict:  {'img': numpy array, 'width': width, 'height': height }
    """
    from PIL import Image
    mat = fitz.Matrix(dpi / 72, dpi / 72)
    pm = doc.get_pixmap(matrix=mat, alpha=False)

myhloli's avatar
myhloli committed
27
28
    # If the width or height exceeds 4500 after scaling, do not scale further.
    if pm.width > 4500 or pm.height > 4500:
29
30
31
32
33
34
35
36
        pm = doc.get_pixmap(matrix=fitz.Matrix(1, 1), alpha=False)

    img = Image.frombytes('RGB', (pm.width, pm.height), pm.samples)
    img = np.array(img)

    img_dict = {'img': img, 'width': pm.width, 'height': pm.height}

    return img_dict
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

@ImportPIL
def load_images_from_pdf(pdf_bytes: bytes, dpi=200, start_page_id=0, end_page_id=None) -> list:
    from PIL import Image
    images = []
    with fitz.open('pdf', pdf_bytes) as doc:
        pdf_page_num = doc.page_count
        end_page_id = (
            end_page_id
            if end_page_id is not None and end_page_id >= 0
            else pdf_page_num - 1
        )
        if end_page_id > pdf_page_num - 1:
            logger.warning('end_page_id is out of range, use images length')
            end_page_id = pdf_page_num - 1

        for index in range(0, doc.page_count):
            if start_page_id <= index <= end_page_id:
                page = doc[index]
                mat = fitz.Matrix(dpi / 72, dpi / 72)
                pm = page.get_pixmap(matrix=mat, alpha=False)

                # If the width or height exceeds 4500 after scaling, do not scale further.
                if pm.width > 4500 or pm.height > 4500:
                    pm = page.get_pixmap(matrix=fitz.Matrix(1, 1), alpha=False)

                img = Image.frombytes('RGB', (pm.width, pm.height), pm.samples)
                img = np.array(img)
                img_dict = {'img': img, 'width': pm.width, 'height': pm.height}
            else:
                img_dict = {'img': [], 'width': 0, 'height': 0}

            images.append(img_dict)
    return images
icecraft's avatar
icecraft committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

    
def convert_page(bytes_page):
    pdfs = fitz.open('pdf', bytes_page)
    page = pdfs[0]
    return fitz_doc_to_image(page)
    
def parallel_process_pdf_safe(pages, num_workers=None, **kwargs):
    """Process PDF pages in parallel with serialization-safe approach"""
    if num_workers is None:
        num_workers = mp.cpu_count()
    

    # Process the extracted page data in parallel
    with ProcessPoolExecutor(max_workers=num_workers) as executor:
        # Process the page data
        results = list(
            executor.map(convert_page, pages)
        )
    
    return results


def threaded_process_pdf(pdf_path, num_threads=4, **kwargs):
    """
    Process all pages of a PDF using multiple threads
    
    Parameters:
    -----------
    pdf_path : str
        Path to the PDF file
    num_threads : int
        Number of threads to use
    **kwargs :
        Additional arguments for fitz_doc_to_image
        
    Returns:
    --------
    images : list
        List of processed images, in page order
    """
    # Open the PDF
    doc = fitz.open(pdf_path)
    num_pages = len(doc)
    
    # Create a list to store results in the correct order
    results = [None] * num_pages
    
    # Create a thread pool
    with ThreadPoolExecutor(max_workers=num_threads) as executor:
        # Submit all tasks
        futures = {}
        for page_num in range(num_pages):
            page = doc[page_num]
            future = executor.submit(fitz_doc_to_image, page, **kwargs)
            futures[future] = page_num
        # Process results as they complete with progress bar
        for future in as_completed(futures):
            page_num = futures[future]
            try:
                results[page_num] = future.result()
            except Exception as e:
                print(f"Error processing page {page_num}: {e}")
                results[page_num] = None
    
    # Close the document
    doc.close()

if __name__ == "__main__":
    pdf = fitz.open('/tmp/[MS-DOC].pdf')
    
    
    pdf_page = [fitz.open() for i in range(pdf.page_count)]
    [pdf_page[i].insert_pdf(pdf, from_page=i, to_page=i) for i in range(pdf.page_count)]
 
    pdf_page = [v.tobytes() for v in pdf_page]
    results = parallel_process_pdf_safe(pdf_page, num_workers=16)
    
    # threaded_process_pdf('/tmp/[MS-DOC].pdf', num_threads=16)

    """ benchmark results of multi-threaded processing (fitz page to image)
    total page nums: 578 
    thread nums,    time cost 
    1               7.351 sec
    2               6.334 sec
    4               5.968 sec
    8               6.728 sec
    16              8.085 sec
    """

    """ benchmark results of multi-processor processing (fitz page to image)
    total page nums: 578 
    processor nums,    time cost 
    1                  17.170 sec
    2                  10.170 sec 
    4                  7.841 sec 
    8                  7.900 sec
    16                 7.984 sec
    """