text_badcase.py 39 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
import json
import pandas as pd
import numpy as np
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
import argparse
import os
from sklearn.metrics import classification_report
from sklearn import metrics
from datetime import datetime
import boto3
from botocore.exceptions import NoCredentialsError, ClientError
from io import TextIOWrapper
import zipfile

def Levenshtein_Distance(str1, str2):
    """
    计算并返回两个字符串之间的Levenshtein编辑距离。
    
    参数:
    - str1: 字符串,第一个比较字符串。
    - str2: 字符串,第二个比较字符串。
    
    返回:
    - int: str1和str2之间的Levenshtein距离。
    
    方法:
    - 使用动态规划构建一个矩阵(matrix),其中matrix[i][j]表示str1的前i个字符和str2的前j个字符之间的Levenshtein距离。
    - 矩阵的初始值设定为边界情况,即一个字符串与空字符串之间的距离。
    - 遍历矩阵填充每个格子的值,根据字符是否相等选择插入、删除或替换操作的最小代价。
    """
    # 初始化矩阵,大小为(len(str1)+1) x (len(str2)+1),边界情况下的距离为i和j
    matrix = [[i + j for j in range(len(str2) + 1)] for i in range(len(str1) + 1)]

    # 遍历str1和str2的每个字符,更新矩阵中的值
    for i in range(1, len(str1) + 1):
        for j in range(1, len(str2) + 1):
            # 如果当前字符相等,替换代价为0;否则为1
            d = 0 if (str1[i - 1] == str2[j - 1]) else 1
            # 更新当前位置的值为从str1[i]转换到str2[j]的最小操作数
            matrix[i][j] = min(matrix[i - 1][j] + 1,  # 删除操作
                               matrix[i][j - 1] + 1,  # 插入操作
                               matrix[i - 1][j - 1] + d)  # 替换操作
    # 返回右下角的值,即str1和str2之间的Levenshtein距离
    return matrix[len(str1)][len(str2)]


def bbox_offset(b_t, b_s):
    """
    判断两个边界框(bounding box)之间的重叠程度是否符合给定的标准。
    
    参数:
    - b_t: 测试文档中的边界框(bbox),格式为(x1, y1, x2, y2),
           其中(x1, y1)是左上角的坐标,(x2, y2)是右下角的坐标。
    - b_s: 标准文档中的边界框(bbox),格式同上。
    
    返回:
    - True: 如果两个边界框的重叠面积与两个边界框合计面积的差的比例超过0.95,
            表明它们足够接近。
    - False: 否则,表示两个边界框不足够接近。
    
    注意:
    - 函数首先计算两个bbox的交集区域,如果这个区域的面积相对于两个bbox的面积差非常大,
      则认为这两个bbox足够接近。
    - 如果交集区域的计算结果导致无效区域(比如宽度或高度为负值),或者分母为0(即两个bbox完全不重叠),
      则函数会返回False。
    """

    # 分别提取两个bbox的坐标
    x1_t, y1_t, x2_t, y2_t = b_t
    x1_s, y1_s, x2_s, y2_s = b_s
  
    # 计算两个bbox交集区域的坐标
    x1 = max(x1_t, x1_s)
    x2 = min(x2_t, x2_s)
    y1 = max(y1_t, y1_s)
    y2 = min(y2_t, y2_s)
    
    # 如果计算出的交集区域有效,则计算其面积
    if x2 > x1 and y2 > y1:
        area_overlap = (x2 - x1) * (y2 - y1)
    else:
        # 交集区域无效,视为无重叠
        area_overlap = 0

    # 计算两个bbox的总面积,减去重叠部分避免重复计算
    area_t = (x2_t - x1_t) * (y2_t - y1_t) + (x2_s - x1_s) * (y2_s - y1_s) - area_overlap

    # 判断重叠面积是否符合标准
    

#     return area_overlap / total_area
    if area_t-area_overlap==0 or area_overlap/area_t>0.95:
        return True
    else:
        return False


def equations_indicator(test_equations_bboxs, standard_equations_bboxs, test_equations, standard_equations):
    """
    根据边界框匹配的方程计算编辑距离和BLEU分数。
    
    参数:
    - test_equations_bboxs: 测试方程的边界框列表。
    - standard_equations_bboxs: 标准方程的边界框列表。
    - test_equations: 测试方程的列表。
    - standard_equations: 标准方程的列表。
    
    返回:
    - 一个元组,包含匹配方程的平均Levenshtein编辑距离和BLEU分数。
    """
    
    # 初始化匹配方程列表
    test_match_equations = []
    standard_match_equations = []

    # 匹配方程基于边界框重叠
    for index, (test_bbox, standard_bbox) in enumerate(zip(test_equations_bboxs, standard_equations_bboxs)):
        if not (test_bbox and standard_bbox):  # 跳过任一空列表
            continue
        for i, sb in enumerate(standard_bbox):
            for j, tb in enumerate(test_bbox):
                if bbox_offset(sb, tb):
                    standard_match_equations.append(standard_equations[index][i])
                    test_match_equations.append(test_equations[index][j])
                    break  # 找到第一个匹配后即跳出循环

    # 使用Levenshtein距离和BLEU分数计算编辑距离
    dis = [Levenshtein_Distance(a, b) for a, b in zip(test_match_equations, standard_match_equations) if a and b]
    # 应用平滑函数计算BLEU分数
    sm_func = SmoothingFunction().method1
    bleu = [sentence_bleu([a.split()], b.split(), smoothing_function=sm_func) for a, b in zip(test_match_equations, standard_match_equations) if a and b]

    # 计算平均编辑距离和BLEU分数,处理空列表情况
    equations_edit = np.mean(dis) if dis else float('0.0')
    equations_bleu = np.mean(bleu) if bleu else float('0.0')

    return equations_edit, equations_bleu

def bbox_match_indicator_general(test_bboxs_list, standard_bboxs_list):
    """
    计算边界框匹配指标,支持掉落的表格、图像和文本块。
    此版本的函数专注于计算基于边界框的匹配指标,而不涉及标签匹配逻辑。
    
    参数:
    - test_bboxs: 测试集的边界框列表,按页面组织。
    - standard_bboxs: 标准集的边界框列表,按页面组织。

    返回:
    - 一个字典,包含准确度、精确度、召回率和F1分数。
    """
        # 如果两个列表都完全为空,返回0值指标
    if all(len(page) == 0 for page in test_bboxs_list) and all(len(page) == 0 for page in standard_bboxs_list):
        return {'accuracy': 0, 'precision': 0, 'recall': 0, 'f1_score': 0}
    

    matched_bbox = []
    matched_standard_bbox = []

    for test_page, standard_page in zip(test_bboxs_list, standard_bboxs_list):
        test_page_bbox, standard_page_bbox = [], []
        for standard_bbox in standard_page:
            if len(standard_bbox) != 4:
                continue
            matched = False
            for test_bbox in test_page:
                if len(test_bbox) == 4 and bbox_offset(standard_bbox, test_bbox):
                    matched = True
                    break
            test_page_bbox.append(int(matched))
            standard_page_bbox.append(1)

        # 后处理以处理多删情况,保持原逻辑不变
        diff_num = len(test_page) + test_page_bbox.count(0) - len(standard_page)
        if diff_num > 0:
            test_page_bbox.extend([1] * diff_num)
            standard_page_bbox.extend([0] * diff_num)

        matched_bbox.extend(test_page_bbox)
        matched_standard_bbox.extend(standard_page_bbox)

    block_report = {
        'accuracy': metrics.accuracy_score(matched_standard_bbox, matched_bbox),
        'precision': metrics.precision_score(matched_standard_bbox, matched_bbox, zero_division=0),
        'recall': metrics.recall_score(matched_standard_bbox, matched_bbox, zero_division=0),
        'f1_score': metrics.f1_score(matched_standard_bbox, matched_bbox, zero_division=0)
    }

    return block_report



def bbox_match_indicator_dropped_text_block(test_dropped_text_bboxs, standard_dropped_text_bboxs, standard_dropped_text_tag, test_dropped_text_tag):
    """
    计算丢弃文本块的边界框匹配相关指标,包括准确率、精确率、召回率和F1分数,
    同时也计算文本块标签的匹配指标。

    参数:
    - test_dropped_text_bboxs: 测试集的丢弃文本块边界框列表
    - standard_dropped_text_bboxs: 标准集的丢弃文本块边界框列表
    - standard_dropped_text_tag: 标准集的丢弃文本块标签列表
    - test_dropped_text_tag: 测试集的丢弃文本块标签列表

    返回:
    - 一个包含边界框匹配指标和文本块标签匹配指标的元组
    """
    test_text_bbox, standard_text_bbox = [], []
    test_tag, standard_tag = [], []

    for index, (test_page, standard_page) in enumerate(zip(test_dropped_text_bboxs, standard_dropped_text_bboxs)):
        # 初始化每个页面的结果列表
        test_page_tag, standard_page_tag = [], []
        test_page_bbox, standard_page_bbox = [], []

        for i, standard_bbox in enumerate(standard_page):
            matched = False
            for j, test_bbox in enumerate(test_page):
                if bbox_offset(standard_bbox, test_bbox):
                    # 匹配成功,记录标签和边界框匹配结果
                    matched = True
                    test_page_tag.append(test_dropped_text_tag[index][j])
                    test_page_bbox.append(1)
                    break

            if not matched:
                # 未匹配,记录'None'和边界框未匹配结果
                test_page_tag.append('None')
                test_page_bbox.append(0)

            # 标准边界框和标签总是被视为匹配的
            standard_page_tag.append(standard_dropped_text_tag[index][i])
            standard_page_bbox.append(1)

        # 处理可能的多删情况
        handle_multi_deletion(test_page, test_page_tag, test_page_bbox, standard_page_tag, standard_page_bbox)

        # 合并当前页面的结果到整体结果中
        test_tag.extend(test_page_tag)
        standard_tag.extend(standard_page_tag)
        test_text_bbox.extend(test_page_bbox)
        standard_text_bbox.extend(standard_page_bbox)

    # 计算和返回匹配指标
    if not standard_text_bbox or not test_text_bbox:
        # print("警告:边界框列表为空,跳过性能指标的计算。")
        text_block_report = {
            'accuracy': np.nan,
            'precision': np.nan,
            'recall': np.nan,
            'f1_score': np.nan
        }
    else:
        text_block_report = {
            'accuracy': metrics.accuracy_score(standard_text_bbox, test_text_bbox),
            'precision': metrics.precision_score(standard_text_bbox, test_text_bbox, zero_division=0),
            'recall': metrics.recall_score(standard_text_bbox, test_text_bbox, zero_division=0),
            'f1_score': metrics.f1_score(standard_text_bbox, test_text_bbox, zero_division=0)
        }

    # 对于classification_report,确保至少有一个非'None'标签存在
    labels = list(set(standard_tag) - {'None'})
    if labels:
        text_block_tag_report = classification_report(y_true=standard_tag, y_pred=test_tag, labels=labels, output_dict=True, zero_division=0)
        # 删除不需要的平均值报告,以简化输出
        text_block_tag_report.pop("macro avg", None)
        text_block_tag_report.pop("weighted avg", None)
    else:
        # print("警告:无有效标签进行匹配,跳过标签匹配指标的计算。")
        text_block_tag_report = {}

    return text_block_report, text_block_tag_report



def handle_multi_deletion(test_page, test_page_tag, test_page_bbox, standard_page_tag, standard_page_bbox):
    """
    处理多删情况,即测试页面的边界框或标签数量多于标准页面。
    """
    excess_count = len(test_page) + test_page_bbox.count(0) - len(standard_page_tag)
    if excess_count > 0:
        # 对于多出的项,将它们视为正确匹配的边界框,但标签视为'None'
        test_page_bbox.extend([1] * excess_count)
        standard_page_bbox.extend([0] * excess_count)
        test_page_tag.extend(['None'] * excess_count)
        standard_page_tag.extend(['None'] * excess_count)


def read_json_files(standard_file, test_file):
    """
    读取JSON文件内容
    """
    with open(standard_file, 'r', encoding='utf-8') as sf:
        pdf_json_standard = [json.loads(line) for line in sf]

    with open(test_file, 'r', encoding='utf-8') as tf:
        pdf_json_test = [json.loads(line) for line in tf]

    json_standard_origin = pd.DataFrame(pdf_json_standard)
    json_test = pd.DataFrame(pdf_json_test)

    return json_standard_origin, json_test


def merge_json_data(json_test_df, json_standard_df):
    """
    基于ID合并测试和标准数据集,并返回合并后的数据及存在性检查结果。

    参数:
    - json_test_df: 测试数据的DataFrame。
    - json_standard_df: 标准数据的DataFrame。

    返回:
    - inner_merge: 内部合并的DataFrame,包含匹配的数据行。
    - standard_exist: 标准数据存在性的Series。
    - test_exist: 测试数据存在性的Series。
    """
    test_data = json_test_df[['id', 'mid_json']].drop_duplicates(subset='id', keep='first').reset_index(drop=True)
    standard_data = json_standard_df[['id', 'mid_json', 'pass_label']].drop_duplicates(subset='id', keep='first').reset_index(drop=True)

    outer_merge = pd.merge(test_data, standard_data, on='id', how='outer')
    outer_merge.columns = ['id', 'test_mid_json', 'standard_mid_json', 'pass_label']
    
    standard_exist = outer_merge.standard_mid_json.notnull()
    test_exist = outer_merge.test_mid_json.notnull()

    inner_merge = pd.merge(test_data, standard_data, on='id', how='inner')
    inner_merge.columns = ['id', 'test_mid_json', 'standard_mid_json', 'pass_label']

    return inner_merge, standard_exist, test_exist


def process_equations_and_blocks(json_data):
    """
    处理JSON数据,提取公式、文本块、图片块和表格块的边界框和文本信息。
    
    参数:
    - json_data: 列表,包含标准文档或测试文档的JSON数据。
    
    返回:
    - 字典,包含处理后的数据。
    """
    equations_bboxs = {"inline": [], "interline": []}
    equations_texts = {"inline": [], "interline": []}
    dropped_bboxs = {"text": [], "image": [], "table": []}
    dropped_tags = {"text": []}
    para_texts = []
    para_nums = []
    preproc_nums = []


    for i in json_data:
        mid_json = pd.DataFrame(i).iloc[:,:-1] 
        page_data = {
            "equations_bboxs_list": {"inline": [], "interline": []},
            "equations_texts_list": {"inline": [], "interline": []},
            "dropped_bboxs_list": {"text": [], "image": [], "table": []},
            "dropped_tags_list": {"text": []},
            "para_texts_list": [],
            "para_nums_list": [],
            "preproc_nums_list":[]
        }

        for eq_type in ["inline", "interline"]:
            for equations in mid_json.loc[f"{eq_type}_equations", :]:
                bboxs = [eq['bbox'] for eq in equations]
                texts = [eq['latex_text'] for eq in equations]
                page_data["equations_bboxs_list"][eq_type].append(bboxs)
                page_data["equations_texts_list"][eq_type].append(texts)
        
        equations_bboxs["inline"].append(page_data["equations_bboxs_list"]["inline"])
        equations_bboxs["interline"].append(page_data["equations_bboxs_list"]["interline"])
        equations_texts["inline"].append(page_data["equations_texts_list"]["inline"])
        equations_texts["interline"].append(page_data["equations_texts_list"]["interline"])


        # 提取丢弃的文本块信息
        for dropped_text_blocks in mid_json.loc['droped_text_block',:]:
            bboxs, tags = [], []
            for block in dropped_text_blocks:
                bboxs.append(block['bbox'])
                tags.append(block.get('tag', 'None'))
            
            page_data["dropped_bboxs_list"]["text"].append(bboxs)
            page_data["dropped_tags_list"]["text"].append(tags)
        
        dropped_bboxs["text"].append(page_data["dropped_bboxs_list"]["text"])
        dropped_tags["text"].append(page_data["dropped_tags_list"]["text"])


      
        # 同时处理删除的图片块和表格块
        for block_type in ['image', 'table']:
            # page_blocks_list = []
            for blocks in mid_json.loc[f'droped_{block_type}_block', :]:
                # 如果是标准数据,直接添加整个块的列表
                page_data["dropped_bboxs_list"][block_type].append(blocks)

            
        # 将当前页面的块边界框列表添加到结果字典中
        dropped_bboxs['image'].append(page_data["dropped_bboxs_list"]['image'])
        dropped_bboxs['table'].append(page_data["dropped_bboxs_list"]['table'])
        
        
        # 处理段落
        for para_blocks in mid_json.loc['para_blocks', :]:
            page_data["para_nums_list"].append(len(para_blocks))  # 计算段落数
            for para_block in para_blocks:
                page_data["para_texts_list"].append(para_block['text'])
        
        for preproc_blocks in mid_json.loc['preproc_blocks', :]:
            numbers=[]
            for preproc_block in preproc_blocks:
                numbers.append(preproc_block['number'])
            
            page_data["preproc_nums_list"].append(numbers)
            
            
        
        para_texts.append(page_data["para_texts_list"])
        para_nums.append(page_data["para_nums_list"])
        preproc_nums.append(page_data["preproc_nums_list"])

        
    return {
        "equations_bboxs": equations_bboxs,
        "equations_texts": equations_texts,
        "dropped_bboxs": dropped_bboxs,
        "dropped_tags": dropped_tags,
        "para_texts": para_texts,
        "para_nums": para_nums,
        "preproc_nums": preproc_nums
    }


def consolidate_data(test_data, standard_data, key_path):
    """
    Consolidates data from test and standard datasets based on the provided key path.
    
    :param test_data: Dictionary containing the test dataset.
    :param standard_data: Dictionary containing the standard dataset.
    :param key_path: List of keys leading to the desired data within the dictionaries.
    :return: List containing all items from both test and standard data at the specified key path.
    """
    # Initialize an empty list to hold the consolidated data
    overall_data_standard = []
    overall_data_test = []
    
    # Helper function to recursively navigate through the dictionaries based on the key path
    def extract_data(source_data, keys):
        for key in keys[:-1]:
            source_data = source_data.get(key, {})
        return source_data.get(keys[-1], [])
    
    for data in extract_data(standard_data, key_path):
    # 假设每个 single_table_tags 已经是一个列表,直接将它的元素添加到总列表中
        overall_data_standard.extend(data)
    
    for data in extract_data(test_data, key_path):
         overall_data_test.extend(data)
    # Extract and extend the overall data list with items from both test and standard datasets

    
    return overall_data_standard, overall_data_test


def calculate_metrics(inner_merge, json_test, json_standard, json_standard_origin):
    """
    计算指标
    """
    # 创建ID到file_id的映射
    id_to_file_id_map = pd.Series(json_standard_origin.file_id.values, index=json_standard_origin.id).to_dict()

    # 处理标准数据和测试数据
    process_data_standard = process_equations_and_blocks(json_standard)
    process_data_test = process_equations_and_blocks(json_test)

    # 从inner_merge中筛选出pass_label为'yes'的数据
    test_para_text = np.asarray(process_data_test['para_texts'], dtype=object)[inner_merge['pass_label'] == 'yes']
    standard_para_text = np.asarray(process_data_standard['para_texts'], dtype=object)[inner_merge['pass_label'] == 'yes']
    ids_yes = inner_merge['id'][inner_merge['pass_label'] == 'yes'].tolist()

    pdf_dis = {}
    pdf_bleu = {}

    # 对pass_label为'yes'的数据计算编辑距离和BLEU得分
    for idx, (a, b, id) in enumerate(zip(test_para_text, standard_para_text, ids_yes)):
        a1 = ''.join(a)
        b1 = ''.join(b)
        pdf_dis[id] = Levenshtein_Distance(a, b)
        pdf_bleu[id] = sentence_bleu([a1], b1)

        
    result_dict = {}
    acc_para=[]
    

 
    
    # 对所有数据计算其他指标
    for index, id_value in enumerate(inner_merge['id'].tolist()):
        result = {}
        
        # 增加file_id到结果中
        file_id = id_to_file_id_map.get(id_value, "Unknown")
        result['file_id'] = file_id
        

        
        # 根据id判断是否需要计算pdf_dis和pdf_bleu
        if id_value in ids_yes:
            result['pdf_dis'] = pdf_dis[id_value]
            result['pdf_bleu'] = pdf_bleu[id_value]
        
        # 阅读顺序编辑距离的均值
        preproc_num_dis=[]
        for a,b in zip(process_data_test['preproc_nums'][index],process_data_standard['preproc_nums'][index]):
            preproc_num_dis.append(Levenshtein_Distance(a,b))
        result['阅读顺序编辑距离']=np.mean(preproc_num_dis) 


        # 计算分段准确率
        single_test_para_num = np.array(process_data_test['para_nums'][index])
        single_standard_para_num = np.array(process_data_standard['para_nums'][index])
        acc_para.append(np.mean(single_test_para_num == single_standard_para_num))
        
        result['分段准确率'] = acc_para[index]
    
        # 行内公式准确率和编辑距离、bleu
        result['行内公式准确率'] = bbox_match_indicator_general(
            process_data_test["equations_bboxs"]["inline"][index],
            process_data_standard["equations_bboxs"]["inline"][index])
        
        result['行内公式编辑距离'], result['行内公式bleu'] = equations_indicator(
            process_data_test["equations_bboxs"]["inline"][index],
            process_data_standard["equations_bboxs"]["inline"][index],
            process_data_test["equations_texts"]["inline"][index],
            process_data_standard["equations_texts"]["inline"][index])

        # 行间公式准确率和编辑距离、bleu
        result['行间公式准确率'] = bbox_match_indicator_general(
            process_data_test["equations_bboxs"]["interline"][index],
            process_data_standard["equations_bboxs"]["interline"][index])
        
        result['行间公式编辑距离'], result['行间公式bleu'] = equations_indicator(
            process_data_test["equations_bboxs"]["interline"][index],
            process_data_standard["equations_bboxs"]["interline"][index],
            process_data_test["equations_texts"]["interline"][index],
            process_data_standard["equations_texts"]["interline"][index])

        # 丢弃文本准确率,丢弃文本标签准确率
        result['丢弃文本准确率'], result['丢弃文本标签准确率'] = bbox_match_indicator_dropped_text_block(
            process_data_test["dropped_bboxs"]["text"][index],
            process_data_standard["dropped_bboxs"]["text"][index],
            process_data_standard["dropped_tags"]["text"][index],
            process_data_test["dropped_tags"]["text"][index])

        # 丢弃图片准确率
        result['丢弃图片准确率'] = bbox_match_indicator_general(
            process_data_test["dropped_bboxs"]["image"][index],
            process_data_standard["dropped_bboxs"]["image"][index])

        # 丢弃表格准确率
        result['丢弃表格准确率'] = bbox_match_indicator_general(
            process_data_test["dropped_bboxs"]["table"][index],
            process_data_standard["dropped_bboxs"]["table"][index])


        # 将结果存入result_dict
        result_dict[id_value] = result

    return result_dict


def overall_calculate_metrics(inner_merge, json_test, json_standard,standard_exist, test_exist):
    """
    计算整体指标:包括准确性、精确度、召回率、F1分数以及不同方面的详细指标。

    参数:
    - inner_merge: 合并后的内部数据,包含测试和标准数据的合并结果。
    - json_test: 测试数据的JSON格式。
    - json_standard: 标准数据的JSON格式。
    - standard_exist: 标准存在的标签数据。
    - test_exist: 测试存在的标签数据。

    返回值:
    - overall_report: 包含各种指标的字典。
    """

    # 处理标准数据和测试数据,提取方程式和块
    process_data_standard = process_equations_and_blocks(json_standard)
    process_data_test = process_equations_and_blocks(json_test)

    # 初始化整体报告,并计算基础指标
    overall_report = {}
    overall_report['accuracy']=metrics.accuracy_score(standard_exist,test_exist)
    overall_report['precision']=metrics.precision_score(standard_exist,test_exist)
    overall_report['recall']=metrics.recall_score(standard_exist,test_exist)
    overall_report['f1_score']=metrics.f1_score(standard_exist,test_exist)
    overall_report

    # 提取通过标签的数据,并计算编辑距离和BLEU得分
    test_para_text = np.asarray(process_data_test['para_texts'], dtype=object)[inner_merge['pass_label'] == 'yes']
    standard_para_text = np.asarray(process_data_standard['para_texts'], dtype=object)[inner_merge['pass_label'] == 'yes']
    ids_yes = inner_merge['id'][inner_merge['pass_label'] == 'yes'].tolist()

    pdf_dis = {}
    pdf_bleu = {}

    for idx,(a, b, id) in enumerate(zip(test_para_text, standard_para_text, ids_yes)):
        a1 = ''.join(a)
        b1 = ''.join(b)
        pdf_dis[id] = Levenshtein_Distance(a, b)
        pdf_bleu[id] = sentence_bleu([a1], b1)

    overall_report['pdf间的平均编辑距离'] = np.mean(list(pdf_dis.values()))
    overall_report['pdf间的平均bleu'] = np.mean(list(pdf_bleu.values()))

    # 合并数据中的方程式bbox和inline数据
    overall_equations_bboxs_inline_standard,overall_equations_bboxs_inline_test = consolidate_data(process_data_test, process_data_standard, ["equations_bboxs", "inline"])

    # 合并数据中的方程式文本和inline数据
    overall_equations_texts_inline_standard,overall_equations_texts_inline_test = consolidate_data(process_data_test, process_data_standard, ["equations_texts", "inline"])

    # 合并数据中的方程式bbox和interline数据
    overall_equations_bboxs_interline_standard,overall_equations_bboxs_interline_test = consolidate_data(process_data_test, process_data_standard, ["equations_bboxs", "interline"])

    # 合并数据中的方程式文本和interline数据
    overall_equations_texts_interline_standard,overall_equations_texts_interline_test = consolidate_data(process_data_test, process_data_standard, ["equations_texts", "interline"])

    # 合并丢弃的bbox和text数据
    overall_dropped_bboxs_text_standard,overall_dropped_bboxs_text_test = consolidate_data(process_data_test, process_data_standard, ["dropped_bboxs","text"])

    # 合并丢弃的tags和text数据
    overall_dropped_tags_text_standard,overall_dropped_tags_text_test = consolidate_data(process_data_test, process_data_standard, ["dropped_tags","text"])

    # 合并丢弃的bbox和image数据
    overall_dropped_bboxs_image_standard,overall_dropped_bboxs_image_test = consolidate_data(process_data_test, process_data_standard, ["dropped_bboxs","image"])

    # 合并丢弃的bbox和table数据
    overall_dropped_bboxs_table_standard,overall_dropped_bboxs_table_test=consolidate_data(process_data_test, process_data_standard,["dropped_bboxs","table"])

    # 合并阅读顺序的编辑距离
    overall_preproc_standard,overall_preproc_test = consolidate_data(process_data_test, process_data_standard, ["preproc_nums"])

    # 计算测试和标准数据的段落数量
    para_nums_test = process_data_test['para_nums']
    para_nums_standard=process_data_standard['para_nums']
    overall_para_nums_standard = [item for sublist in para_nums_standard for item in (sublist if isinstance(sublist, list) else [sublist])]
    overall_para_nums_test = [item for sublist in para_nums_test for item in (sublist if isinstance(sublist, list) else [sublist])]


    preproc_num_dis=[]
    for a,b in zip(overall_preproc_standard,overall_preproc_test):
        preproc_num_dis.append(Levenshtein_Distance(a,b))
    overall_report['阅读顺序编辑距离']=np.mean(preproc_num_dis) 

    # 计算段落匹配准确性
    test_para_num=np.array(overall_para_nums_test)
    standard_para_num=np.array(overall_para_nums_standard)
    acc_para=np.mean(test_para_num==standard_para_num)

    overall_report['分段准确率'] = acc_para

    # 计算并更新报告中的各种指标
    overall_report['行内公式准确率'] = bbox_match_indicator_general(
        overall_equations_bboxs_inline_test,
        overall_equations_bboxs_inline_standard)

    overall_report['行内公式编辑距离'], overall_report['行内公式bleu'] = equations_indicator(
        overall_equations_bboxs_inline_test,
        overall_equations_bboxs_inline_standard,
        overall_equations_texts_inline_test,
        overall_equations_texts_inline_standard)

    overall_report['行间公式准确率'] = bbox_match_indicator_general(
        overall_equations_bboxs_interline_test,
        overall_equations_bboxs_interline_standard)

    overall_report['行间公式编辑距离'], overall_report['行间公式bleu'] = equations_indicator(
        overall_equations_bboxs_interline_test,
        overall_equations_bboxs_interline_standard,
        overall_equations_texts_interline_test,
        overall_equations_texts_interline_standard)

    overall_report['丢弃文本准确率'], overall_report['丢弃文本标签准确率'] = bbox_match_indicator_dropped_text_block(
        overall_dropped_bboxs_text_test,
        overall_dropped_bboxs_text_standard,
        overall_dropped_tags_text_standard,
        overall_dropped_tags_text_test)

    overall_report['丢弃图片准确率'] = bbox_match_indicator_general(
        overall_dropped_bboxs_image_test,
        overall_dropped_bboxs_image_standard)

    overall_report['丢弃表格准确率'] = bbox_match_indicator_general(
        overall_dropped_bboxs_table_test,
        overall_dropped_bboxs_table_standard)

    return overall_report



def check_json_files_in_zip_exist(zip_file_path, standard_json_path_in_zip, test_json_path_in_zip):
    """
    检查ZIP文件中是否存在指定的JSON文件
    """
    with zipfile.ZipFile(zip_file_path, 'r') as z:
        # 获取ZIP文件中所有文件的列表
        all_files_in_zip = z.namelist()
        # 检查标准文件和测试文件是否都在ZIP文件中
        if standard_json_path_in_zip not in all_files_in_zip or test_json_path_in_zip not in all_files_in_zip:
            raise FileNotFoundError("One or both of the required JSON files are missing from the ZIP archive.")

def read_json_files_from_streams(standard_file_stream, test_file_stream):
    """
    从文件流中读取JSON文件内容
    """
    pdf_json_standard = [json.loads(line) for line in standard_file_stream]
    pdf_json_test = [json.loads(line) for line in test_file_stream]

    json_standard_origin = pd.DataFrame(pdf_json_standard)
    json_test_origin = pd.DataFrame(pdf_json_test)

    return json_standard_origin, json_test_origin


def read_json_files_from_zip(zip_file_path, standard_json_path_in_zip, test_json_path_in_zip):
    """
    从ZIP文件中读取两个JSON文件并返回它们的DataFrame
    """
    with zipfile.ZipFile(zip_file_path, 'r') as z:
        with z.open(standard_json_path_in_zip) as standard_file_stream, \
             z.open(test_json_path_in_zip) as test_file_stream:

            standard_file_text_stream = TextIOWrapper(standard_file_stream, encoding='utf-8')
            test_file_text_stream = TextIOWrapper(test_file_stream, encoding='utf-8')

            json_standard_origin, json_test_origin = read_json_files_from_streams(
                standard_file_text_stream, test_file_text_stream
            )
    
    return json_standard_origin, json_test_origin


def merge_json_data(json_test_df, json_standard_df):
    """
    基于ID合并测试和标准数据集,并返回合并后的数据及存在性检查结果。

    参数:
    - json_test_df: 测试数据的DataFrame。
    - json_standard_df: 标准数据的DataFrame。

    返回:
    - inner_merge: 内部合并的DataFrame,包含匹配的数据行。
    - standard_exist: 标准数据存在性的Series。
    - test_exist: 测试数据存在性的Series。
    """
    test_data = json_test_df[['id', 'mid_json']].drop_duplicates(subset='id', keep='first').reset_index(drop=True)
    standard_data = json_standard_df[['id', 'mid_json', 'pass_label']].drop_duplicates(subset='id', keep='first').reset_index(drop=True)

    outer_merge = pd.merge(test_data, standard_data, on='id', how='outer')
    outer_merge.columns = ['id', 'test_mid_json', 'standard_mid_json', 'pass_label']

    standard_exist = outer_merge.standard_mid_json.notnull()
    test_exist = outer_merge.test_mid_json.notnull()

    inner_merge = pd.merge(test_data, standard_data, on='id', how='inner')
    inner_merge.columns = ['id', 'test_mid_json', 'standard_mid_json', 'pass_label']

    return inner_merge, standard_exist, test_exist

def save_results(result_dict,overall_report_dict,badcase_path,overall_path,):
    """
    将结果字典保存为JSON文件至指定路径。

    参数:
    - result_dict: 包含计算结果的字典。
    - overall_path: 结果文件的保存路径,包括文件名。
    """
    # 打开指定的文件以写入
    with open(badcase_path, 'w', encoding='utf-8') as f:
        # 将结果字典转换为JSON格式并写入文件
        json.dump(result_dict, f, ensure_ascii=False, indent=4)

    print(f"计算结果已经保存到文件:{badcase_path}")

    with open(overall_path, 'w', encoding='utf-8') as f:
    # 将结果字典转换为JSON格式并写入文件
        json.dump(overall_report_dict, f, ensure_ascii=False, indent=4)

    print(f"计算结果已经保存到文件:{overall_path}")

    
def upload_to_s3(file_path, bucket_name, s3_directory, AWS_ACCESS_KEY, AWS_SECRET_KEY, END_POINT_URL):
    """
    上传文件到Amazon S3
    """
    # 创建S3客户端
    s3 = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY, aws_secret_access_key=AWS_SECRET_KEY, endpoint_url=END_POINT_URL)
    try:
        # 从文件路径中提取文件名
        file_name = os.path.basename(file_path)
        
        # 创建S3对象键,将s3_directory和file_name连接起来
        s3_object_key = f"{s3_directory}/{file_name}"  # 使用斜杠直接连接
        
        # 上传文件到S3
        s3.upload_file(file_path, bucket_name, s3_object_key)
        
        print(f"文件 {file_path} 成功上传到S3存储桶 {bucket_name} 中的目录 {s3_directory},文件名为 {file_name}")
    except FileNotFoundError:
        print(f"文件 {file_path} 未找到,请检查文件路径是否正确。")
    except NoCredentialsError:
        print("无法找到AWS凭证,请确认您的AWS访问密钥和密钥ID是否正确。")
    except ClientError as e:
        print(f"上传文件时发生错误:{e}")


def generate_filename(badcase_path,overall_path):
    """
    生成带有当前时间戳的输出文件名。

    参数:
    - base_path: 基础路径和文件名前缀。

    返回:
    - 带有当前时间戳的完整输出文件名。
    """
    # 获取当前时间并格式化为字符串
    current_time = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
    # 构建并返回完整的输出文件名
    return f"{badcase_path}_{current_time}.json",f"{overall_path}_{current_time}.json"


def compare_edit_distance(json_file, overall_report):
    with open(json_file, 'r',encoding='utf-8') as f:
        json_data = json.load(f)
    
    json_edit_distance = json_data['pdf间的平均编辑距离']
    
    if overall_report['pdf间的平均编辑距离'] > json_edit_distance:
        return 0
    else:
        return 1
    
def main(standard_file, test_file, zip_file, badcase_path, overall_path,base_data_path, s3_bucket_name=None, s3_file_directory=None, 
         aws_access_key=None, aws_secret_key=None, end_point_url=None):
    """
    主函数,执行整个评估流程。
    
    参数:
    - standard_file: 标准文件的路径。
    - test_file: 测试文件的路径。
    - zip_file: 压缩包的路径的路径。
    - badcase_path: badcase文件的基础路径和文件名前缀。
    - overall_path: overall文件的基础路径和文件名前缀。
    - s3_bucket_name: S3桶名称(可选)。
    - s3_file_directory: S3上的文件保存目录(可选)。
    - AWS_ACCESS_KEY, AWS_SECRET_KEY, END_POINT_URL: AWS访问凭证和端点URL(可选)。
    """
    # 检查文件是否存在
    check_json_files_in_zip_exist(zip_file, standard_file, test_file)

    # 读取JSON文件内容
    json_standard_origin, json_test_origin = read_json_files_from_zip(zip_file, standard_file, test_file)

    # 合并JSON数据
    inner_merge, standard_exist, test_exist = merge_json_data(json_test_origin, json_standard_origin)

    #计算总体指标
    overall_report_dict=overall_calculate_metrics(inner_merge, inner_merge['test_mid_json'], inner_merge['standard_mid_json'],standard_exist, test_exist)
    # 计算指标
    result_dict = calculate_metrics(inner_merge, inner_merge['test_mid_json'], inner_merge['standard_mid_json'], json_standard_origin)

    # 生成带时间戳的输出文件名
    badcase_file,overall_file = generate_filename(badcase_path,overall_path)

    # 保存结果到JSON文件
    save_results(result_dict, overall_report_dict,badcase_file,overall_file)

    result=compare_edit_distance(base_data_path, overall_report_dict)

    if all([s3_bucket_name, s3_file_directory, aws_access_key, aws_secret_key, end_point_url]):
        try:
            upload_to_s3(badcase_file, s3_bucket_name, s3_file_directory, aws_access_key, aws_secret_key, end_point_url)
            upload_to_s3(overall_file, s3_bucket_name, s3_file_directory, aws_access_key, aws_secret_key, end_point_url)
        except Exception as e:
            print(f"上传到S3时发生错误: {e}")
    print(result)
quyuan's avatar
CI yaml  
quyuan committed
889
    assert result == 1
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="主函数,执行整个评估流程。")
    parser.add_argument('standard_file', type=str, help='标准文件的路径。')
    parser.add_argument('test_file', type=str, help='测试文件的路径。')
    parser.add_argument('zip_file', type=str, help='压缩包的路径。')
    parser.add_argument('badcase_path', type=str, help='badcase文件的基础路径和文件名前缀。')
    parser.add_argument('overall_path', type=str, help='overall文件的基础路径和文件名前缀。')
    parser.add_argument('base_data_path', type=str, help='基准文件的基础路径和文件名前缀。')
    parser.add_argument('--s3_bucket_name', type=str, help='S3桶名称。', default=None)
    parser.add_argument('--s3_file_directory', type=str, help='S3上的文件名。', default=None)
    parser.add_argument('--AWS_ACCESS_KEY', type=str, help='AWS访问密钥。', default=None)
    parser.add_argument('--AWS_SECRET_KEY', type=str, help='AWS秘密密钥。', default=None)
    parser.add_argument('--END_POINT_URL', type=str, help='AWS端点URL。', default=None)

    args = parser.parse_args()

    main(args.standard_file, args.test_file, args.zip_file, args.badcase_path,args.overall_path,args.base_data_path,args.s3_bucket_name, args.s3_file_directory, args.AWS_ACCESS_KEY, args.AWS_SECRET_KEY, args.END_POINT_URL)