app.py 10.8 KB
Newer Older
1
2
import json
import os
3
4
from base64 import b64encode
from glob import glob
5
from io import StringIO
6
import tempfile
7
from typing import Tuple, Union
8
9

import uvicorn
10
from fastapi import FastAPI, HTTPException, UploadFile
11
12
from fastapi.responses import JSONResponse
from loguru import logger
13

14
from magic_pdf.data.read_api import read_local_images, read_local_office
15
import magic_pdf.model as model_config
icecraft's avatar
icecraft committed
16
from magic_pdf.config.enums import SupportedPdfParseMethod
17
18
from magic_pdf.data.data_reader_writer import DataWriter, FileBasedDataWriter
from magic_pdf.data.data_reader_writer.s3 import S3DataReader, S3DataWriter
19
from magic_pdf.data.dataset import ImageDataset, PymuDocDataset
20
from magic_pdf.libs.config_reader import get_bucket_name, get_s3_config
icecraft's avatar
icecraft committed
21
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
22
from magic_pdf.operators.models import InferenceResult
23
from magic_pdf.operators.pipes import PipeResult
24
25
26
27
28

model_config.__use_inside_model__ = True

app = FastAPI()

29
30
31
pdf_extensions = [".pdf"]
office_extensions = [".ppt", ".pptx", ".doc", ".docx"]
image_extensions = [".png", ".jpg"]
32

33
34
35
class MemoryDataWriter(DataWriter):
    def __init__(self):
        self.buffer = StringIO()
36

37
38
39
    def write(self, path: str, data: bytes) -> None:
        if isinstance(data, str):
            self.buffer.write(data)
40
        else:
shniubobo's avatar
shniubobo committed
41
            self.buffer.write(data.decode("utf-8"))
42

43
44
    def write_string(self, path: str, data: str) -> None:
        self.buffer.write(data)
45

46
47
    def get_value(self) -> str:
        return self.buffer.getvalue()
48

49
50
    def close(self):
        self.buffer.close()
51

shniubobo's avatar
shniubobo committed
52

53
def init_writers(
54
55
    file_path: str = None,
    file: UploadFile = None,
56
57
    output_path: str = None,
    output_image_path: str = None,
shniubobo's avatar
shniubobo committed
58
59
60
61
62
) -> Tuple[
    Union[S3DataWriter, FileBasedDataWriter],
    Union[S3DataWriter, FileBasedDataWriter],
    bytes,
]:
63
64
    """
    Initialize writers based on path type
icecraft's avatar
icecraft committed
65

66
67
68
69
70
71
72
    Args:
        pdf_path: PDF file path (local path or S3 path)
        pdf_file: Uploaded PDF file object
        output_path: Output directory path
        output_image_path: Image output directory path

    Returns:
shniubobo's avatar
shniubobo committed
73
74
        Tuple[writer, image_writer, pdf_bytes]: Returns initialized writer tuple and PDF
        file content
75
    """
76
77
78
    file_extension:str = None
    if file_path:
        is_s3_path = file_path.startswith("s3://")
79
        if is_s3_path:
80
            bucket = get_bucket_name(file_path)
81
82
            ak, sk, endpoint = get_s3_config(bucket)

shniubobo's avatar
shniubobo committed
83
84
85
86
87
88
            writer = S3DataWriter(
                output_path, bucket=bucket, ak=ak, sk=sk, endpoint_url=endpoint
            )
            image_writer = S3DataWriter(
                output_image_path, bucket=bucket, ak=ak, sk=sk, endpoint_url=endpoint
            )
89
            # 临时创建reader读取文件内容
shniubobo's avatar
shniubobo committed
90
91
92
            temp_reader = S3DataReader(
                "", bucket=bucket, ak=ak, sk=sk, endpoint_url=endpoint
            )
93
94
            file_bytes = temp_reader.read(file_path)
            file_extension = os.path.splitext(file_path)[1]
icecraft's avatar
icecraft committed
95
        else:
96
97
98
            writer = FileBasedDataWriter(output_path)
            image_writer = FileBasedDataWriter(output_image_path)
            os.makedirs(output_image_path, exist_ok=True)
99
100
101
            with open(file_path, "rb") as f:
                file_bytes = f.read()
            file_extension = os.path.splitext(file_path)[1]
102
103
    else:
        # 处理上传的文件
104
105
        file_bytes = file.file.read()
        file_extension = os.path.splitext(file.filename)[1]
106
107
108
109
        writer = FileBasedDataWriter(output_path)
        image_writer = FileBasedDataWriter(output_image_path)
        os.makedirs(output_image_path, exist_ok=True)

110
    return writer, image_writer, file_bytes, file_extension
111

shniubobo's avatar
shniubobo committed
112

113
114
115
def process_file(
    file_bytes: bytes,
    file_extension: str,
116
    parse_method: str,
shniubobo's avatar
shniubobo committed
117
    image_writer: Union[S3DataWriter, FileBasedDataWriter],
118
119
120
121
122
123
124
125
) -> Tuple[InferenceResult, PipeResult]:
    """
    Process PDF file content

    Args:
        pdf_bytes: Binary content of PDF file
        parse_method: Parse method ('ocr', 'txt', 'auto')
        image_writer: Image writer
126

127
128
129
    Returns:
        Tuple[InferenceResult, PipeResult]: Returns inference result and pipeline result
    """
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

    ds = Union[PymuDocDataset, ImageDataset]
    if file_extension in pdf_extensions:
        ds = PymuDocDataset(file_bytes)
    elif file_extension in office_extensions:
        # 需要使用office解析
        temp_dir = tempfile.mkdtemp()
        with open(os.path.join(temp_dir, f"temp_file.{file_extension}"), "wb") as f:
            f.write(file_bytes)
        ds = read_local_office(temp_dir)[0]
    elif file_extension in image_extensions:
        # 需要使用ocr解析
        temp_dir = tempfile.mkdtemp()
        with open(os.path.join(temp_dir, f"temp_file.{file_extension}"), "wb") as f:
            f.write(file_bytes)
        ds = read_local_images(temp_dir)[0]
shniubobo's avatar
shniubobo committed
146
147
    infer_result: InferenceResult = None
    pipe_result: PipeResult = None
148

shniubobo's avatar
shniubobo committed
149
    if parse_method == "ocr":
150
151
        infer_result = ds.apply(doc_analyze, ocr=True)
        pipe_result = infer_result.pipe_ocr_mode(image_writer)
shniubobo's avatar
shniubobo committed
152
    elif parse_method == "txt":
153
154
155
156
157
158
159
160
161
        infer_result = ds.apply(doc_analyze, ocr=False)
        pipe_result = infer_result.pipe_txt_mode(image_writer)
    else:  # auto
        if ds.classify() == SupportedPdfParseMethod.OCR:
            infer_result = ds.apply(doc_analyze, ocr=True)
            pipe_result = infer_result.pipe_ocr_mode(image_writer)
        else:
            infer_result = ds.apply(doc_analyze, ocr=False)
            pipe_result = infer_result.pipe_txt_mode(image_writer)
162

163
    return infer_result, pipe_result
164

shniubobo's avatar
shniubobo committed
165

166
167
168
169
170
171
def encode_image(image_path: str) -> str:
    """Encode image using base64"""
    with open(image_path, "rb") as f:
        return b64encode(f.read()).decode()


shniubobo's avatar
shniubobo committed
172
173
174
175
176
@app.post(
    "/pdf_parse",
    tags=["projects"],
    summary="Parse PDF files (supports local files and S3)",
)
177
178
179
async def file_parse(
    file: UploadFile = None,
    file_path: str = None,
shniubobo's avatar
shniubobo committed
180
    parse_method: str = "auto",
181
    is_json_md_dump: bool = False,
shniubobo's avatar
shniubobo committed
182
    output_dir: str = "output",
183
184
185
    return_layout: bool = False,
    return_info: bool = False,
    return_content_list: bool = False,
186
    return_images: bool = False,
187
):
188
189
190
191
    """
    Execute the process of converting PDF to JSON and MD, outputting MD and JSON files
    to the specified directory.

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    Args:
        pdf_file: The PDF file to be parsed. Must not be specified together with
            `pdf_path`
        pdf_path: The path to the PDF file to be parsed. Must not be specified together
            with `pdf_file`
        parse_method: Parsing method, can be auto, ocr, or txt. Default is auto. If
            results are not satisfactory, try ocr
        is_json_md_dump: Whether to write parsed data to .json and .md files. Default
            to False. Different stages of data will be written to different .json files
            (3 in total), md content will be saved to .md file
        output_dir: Output directory for results. A folder named after the PDF file
            will be created to store all results
        return_layout: Whether to return parsed PDF layout. Default to False
        return_info: Whether to return parsed PDF info. Default to False
        return_content_list: Whether to return parsed PDF content list. Default to False
207
    """
208
    try:
209
210
        if (file is None and file_path is None) or (
            file is not None and file_path is not None
211
212
        ):
            return JSONResponse(
213
                content={"error": "Must provide either file or file_path"},
214
                status_code=400,
shniubobo's avatar
shniubobo committed
215
            )
216
217

        # Get PDF filename
218
        file_name = os.path.basename(file_path if file_path else file.filename).split(
shniubobo's avatar
shniubobo committed
219
220
            "."
        )[0]
221
        output_path = f"{output_dir}/{file_name}"
222
223
224
        output_image_path = f"{output_path}/images"

        # Initialize readers/writers and get PDF content
225
226
227
        writer, image_writer, file_bytes, file_extension = init_writers(
            file_path=file_path,
            file=file,
228
            output_path=output_path,
shniubobo's avatar
shniubobo committed
229
            output_image_path=output_image_path,
230
231
232
        )

        # Process PDF
233
        infer_result, pipe_result = process_file(file_bytes, file_extension, parse_method, image_writer)
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

        # Use MemoryDataWriter to get results
        content_list_writer = MemoryDataWriter()
        md_content_writer = MemoryDataWriter()
        middle_json_writer = MemoryDataWriter()

        # Use PipeResult's dump method to get data
        pipe_result.dump_content_list(content_list_writer, "", "images")
        pipe_result.dump_md(md_content_writer, "", "images")
        pipe_result.dump_middle_json(middle_json_writer, "")

        # Get content
        content_list = json.loads(content_list_writer.get_value())
        md_content = md_content_writer.get_value()
        middle_json = json.loads(middle_json_writer.get_value())
        model_json = infer_result.get_infer_res()

        # If results need to be saved
252
        if is_json_md_dump:
shniubobo's avatar
shniubobo committed
253
            writer.write_string(
254
                f"{file_name}_content_list.json", content_list_writer.get_value()
shniubobo's avatar
shniubobo committed
255
            )
256
            writer.write_string(f"{file_name}.md", md_content)
shniubobo's avatar
shniubobo committed
257
            writer.write_string(
258
                f"{file_name}_middle.json", middle_json_writer.get_value()
shniubobo's avatar
shniubobo committed
259
260
            )
            writer.write_string(
261
                f"{file_name}_model.json",
shniubobo's avatar
shniubobo committed
262
263
                json.dumps(model_json, indent=4, ensure_ascii=False),
            )
264
            # Save visualization results
265
266
            pipe_result.draw_layout(os.path.join(output_path, f"{file_name}_layout.pdf"))
            pipe_result.draw_span(os.path.join(output_path, f"{file_name}_spans.pdf"))
shniubobo's avatar
shniubobo committed
267
            pipe_result.draw_line_sort(
268
                os.path.join(output_path, f"{file_name}_line_sort.pdf")
shniubobo's avatar
shniubobo committed
269
            )
270
            infer_result.draw_model(os.path.join(output_path, f"{file_name}_model.pdf"))
271
272
273
274

        # Build return data
        data = {}
        if return_layout:
shniubobo's avatar
shniubobo committed
275
            data["layout"] = model_json
276
        if return_info:
shniubobo's avatar
shniubobo committed
277
            data["info"] = middle_json
278
        if return_content_list:
shniubobo's avatar
shniubobo committed
279
            data["content_list"] = content_list
280
281
282
283
284
285
286
287
        if return_images:
            image_paths = glob(f"{output_image_path}/*.jpg")
            data["images"] = {
                os.path.basename(
                    image_path
                ): f"data:image/jpeg;base64,{encode_image(image_path)}"
                for image_path in image_paths
            }
shniubobo's avatar
shniubobo committed
288
        data["md_content"] = md_content  # md_content is always returned
289
290
291
292
293
294

        # Clean up memory writers
        content_list_writer.close()
        md_content_writer.close()
        middle_json_writer.close()

295
296
297
298
        return JSONResponse(data, status_code=200)

    except Exception as e:
        logger.exception(e)
shniubobo's avatar
shniubobo committed
299
        return JSONResponse(content={"error": str(e)}, status_code=500)
300

301

shniubobo's avatar
shniubobo committed
302
303
if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=8888)