run_text_generation_server.py 5.07 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.

"""Sample Generate GPT"""
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
                                             os.path.pardir)))
from megatron.training import get_args
from megatron.training import print_rank_0
from megatron.core import mpu
from megatron.training.checkpointing import load_checkpoint
from megatron.training.initialize import initialize_megatron
from megatron.core.models.gpt import GPTModel
from megatron.training import get_model
from megatron.training.arguments import core_transformer_config_from_args
from megatron.training.yaml_arguments import core_transformer_config_from_yaml
from megatron.inference.text_generation_server import MegatronServer
from megatron.inference.text_generation import generate_and_post_process
from megatron.inference.text_generation import beam_search_and_post_process
from megatron.core.transformer.spec_utils import import_module
from megatron.core.models.gpt.gpt_layer_specs import (
    get_gpt_layer_local_spec,
    get_gpt_layer_with_transformer_engine_spec,
)

import torch
from typing import Union
import megatron


def model_provider(pre_process=True, post_process=True) -> Union[GPTModel, megatron.legacy.model.GPTModel]:
    """Builds the model.

        If you set the use_legacy_models to True, it will return the legacy GPT model and if not the core GPT model.

        Args:
            pre_process (bool, optional): Set to true if you need to compute embedings. Defaults to True.
            post_process (bool, optional): Set to true if you need to want to compute output logits/loss. Defaults to True.


        Returns:
            Union[GPTModel, megatron.legacy.model.GPTModel]: The returned model
        """

    args = get_args()
    use_te = args.transformer_impl == "transformer_engine"

    print_rank_0('building GPT model ...')

    # Experimental loading arguments from yaml
    if args.yaml_cfg is not None:
        config = core_transformer_config_from_yaml(args, "language_model")
    else:
        config = core_transformer_config_from_args(args)

    if args.use_legacy_models:
        model = megatron.legacy.model.GPTModel(
            config,
            num_tokentypes=0,
            parallel_output=False,
            pre_process=pre_process,
            post_process=post_process
        )
    else:
        if args.spec is not None:
            transformer_layer_spec = import_module(args.spec)
        else:
            if use_te:
                transformer_layer_spec = get_gpt_layer_with_transformer_engine_spec(args.num_experts, args.moe_grouped_gemm)
            else:
                transformer_layer_spec = get_gpt_layer_local_spec(args.num_experts, args.moe_grouped_gemm)

        model = GPTModel(
            config=config,
            transformer_layer_spec=transformer_layer_spec,
            vocab_size=args.padded_vocab_size,
            max_sequence_length=args.max_position_embeddings,
            pre_process=pre_process,
            post_process=post_process,
            fp16_lm_cross_entropy=args.fp16_lm_cross_entropy,
            parallel_output=False,
            share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights,
            position_embedding_type=args.position_embedding_type,
            rotary_percent=args.rotary_percent
        )

    return model

def add_text_generate_args(parser):
    group = parser.add_argument_group(title='text generation')
    group.add_argument("--port", type=int, default=5000,
                       help='port for text generation server to run on')
    return parser


if __name__ == "__main__":
    initialize_megatron(extra_args_provider=add_text_generate_args,
                        args_defaults={'tokenizer_type': 'GPT2BPETokenizer',
                                       'no_load_rng': True,
                                       'no_load_optim': True})

    args = get_args()
    if args.num_layers_per_virtual_pipeline_stage is not None:
        print("Interleaved pipeline schedule is not yet supported for text generation.")
        exit()
    print_rank_0("WARNING: Forcing exit_on_missing_checkpoint to True for text "
                 "generation.")
    args.exit_on_missing_checkpoint = True
    # Set up model and load checkpoint
    model = get_model(model_provider, wrap_with_ddp=False)

    if args.load is not None:
        _ = load_checkpoint(model, None, None)

    assert len(model) == 1, "Above condition should have caught this"
    model = model[0]
    if mpu.is_pipeline_first_stage() and mpu.get_tensor_model_parallel_rank() == 0:
        server = MegatronServer(model)
        server.run("0.0.0.0",port=args.port)

    while True:
        choice = torch.tensor(1, dtype=torch.long, device='cuda')
        torch.distributed.broadcast(choice, 0)
        if choice.item() == 0:
            try:
                generate_and_post_process(model)
            except ValueError as ve:
                pass
        elif choice.item() == 1:
            try:
                beam_search_and_post_process(model)
            except ValueError as ve:
                pass