sft_retro.py 11.1 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.

"""Pretrain GPT"""

import torch
from functools import partial, reduce
import sys, os

sys.path.append(os.path.abspath(os.path.join(
    os.path.join(os.path.dirname(__file__), "../../../"))))
from megatron.training import get_args, get_retro_args
from megatron.training import print_rank_0
from megatron.training import get_timers
from megatron.training import get_tokenizer
from megatron.core import tensor_parallel
from megatron.core.enums import ModelType
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.core.datasets.utils import get_blend_from_list
from megatron.training import pretrain
from megatron.training.utils import get_ltor_masks_and_position_ids
from megatron.training.utils import average_losses_across_data_parallel_group
from pretrain_gpt import model_provider, is_dataset_built_on_rank
from tools.retro.sft.dataset_conv import JsonQADataset, JsonQADatasetConfig, RetroJsonQADataset, RetroJsonQADatasetConfig


def get_tasks_args(parser):
    """Provide extra arguments required for tasks."""
    group = parser.add_argument_group(title='tasks')

    # parameters for the knowledgeable dialogue generation
    group.add_argument('--task', type=str, default=None,
                       help='Task name.')
    group.add_argument('--epochs', type=int, default=None,
                       help='Number of finetunning epochs. Zero results in '
                            'evaluation only.')
    group.add_argument('--keep-last', action='store_true',
                       help='Keep the last batch (maybe incomplete) in'
                            'the data loader')
    group.add_argument('--pretrained-checkpoint', type=str, default=None,
                       help='Pretrained checkpoint used for finetunning.')
    group.add_argument('--data-folder', type=str, default=None,
                       help='dataset folder')
    group.add_argument('--answer-loss-only', action='store_true', default=False,
                       help='take the loss from answer part, ignore the context')
    group.add_argument('--weight', type=float, default=1)
    group.add_argument('--adaptor', action='store_true', default=False)
    group.add_argument('--project-size', type=int, default=256)
    group.add_argument('--cyclic-train-iters', type=int, default=None)
    group.add_argument('--stored_params', type=dict, default=dict())
    group.add_argument('--eval_ppl', action='store_true', default=False)
    group.add_argument('--debug', action='store_true', default=False)
    group.add_argument('--add_retriever', action='store_true', default=False)
    group.add_argument('--return_doc_ids', action='store_true', default=False)
    group.add_argument('--return_neighbor_ids', action='store_true', default=False)
    group.add_argument('--add_offset_doc_ids', action='store_true', default=False)
    group.add_argument('--offset_dict_path', type=str, default='')
    group.add_argument('--neighbors_path', type=str, default='')
    group.add_argument('--valid_neighbors_path', type=str, default='')
    group.add_argument('--database_path', type=str, default='')
    group.add_argument('--valid_database_path', type=str, default='')
    group.add_argument('--encoder-layers', type=int, default=12)
    group.add_argument('--encoder-hidden-dropout', type=float, default=0.1)
    group.add_argument('--encoder-attention-dropout', type=float, default=0.1)
    group.add_argument('--k', type=int, default=2)
    group.add_argument('--r', type=int, default=128)
    group.add_argument('--m', type=int, default=64)
    group.add_argument('--dpr-mode', type=str, default="multi")
    group.add_argument('--faiss-ckpt', type=str, default='')
    group.add_argument('--original-db-file', type=str, default="")
    group.add_argument('--ft_neighbours', type=int, default=1)
    group.add_argument('--reuse-top', action='store_true', default=False)
    group.add_argument('--shuffle_topn', action='store_true', default=False)
    group.add_argument('--chunk0', action='store_true', default=False)
    group.add_argument('--disable-encoder', action='store_true', default=False)
    group.add_argument('--qa-space-pad', action='store_true', default=False)
    group.add_argument('--retro-mask-encoder', action='store_true', default=False)
    group.add_argument('--without-title', action='store_true', default=False)
    group.add_argument('--longform-answer', action='store_true', default=False)
    group.add_argument('--bert-retriever-neighbours', action='store_true', default=False)
    group.add_argument('--prefix', action='store_true', default=False)
    group.add_argument('--question-in-encoder', action='store_true', default=False)
    group.add_argument('--reset_eval', type=bool, default=True)  ## by default reset eval for each eval
    return parser


def get_batch(data_iterator):
    """Generate a batch"""
    args = get_args()
    tokenizer = get_tokenizer()

    # Items and their type.
    keys = ['text', 'answer_mask']
    datatype = torch.int64

    if args.retro_add_retriever:
        keys += 'neighbor_tokens', 'context_len'

    # Broadcast data.
    if data_iterator is not None:
        try:
            data = next(data_iterator)

        except BaseException:
            data = data_iterator
            raise ValueError("error with data_iterator")
    else:
        data = None

    data_b = tensor_parallel.broadcast_data(keys, data, datatype)
    chunk_size = torch.min(data_b['context_len'])
    retro_args = get_retro_args()
    # two chunk retro has at least seq_len / 2 of chunk size
    retro_args.retro_gpt_chunk_length = max(args.seq_length // 2, args.seq_length - chunk_size.item())

    # Unpack.
    tokens_ = data_b['text'].long()
    labels = tokens_[:, 1:].contiguous()
    tokens = tokens_[:, :-1].contiguous()

    answer_mask = data_b["answer_mask"].float()[:, 1:].contiguous()

    if args.retro_add_retriever:
        neighbor_tokens = data_b['neighbor_tokens'].view(-1,
                                                         retro_args.retro_gpt_retrieved_length).long()  # [bs * l * k, r]

    # Get the masks and postition ids.
    attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
        tokens,
        tokenizer.eod,
        args.reset_position_ids,
        args.reset_attention_mask,
        args.eod_mask_loss)

    if args.answer_loss_only:
        loss_mask = loss_mask * answer_mask

    if args.retro_add_retriever:
        _, _, neighbor_position_ids = get_ltor_masks_and_position_ids(
            neighbor_tokens,
            tokenizer.eod,
            args.reset_position_ids,
            args.reset_attention_mask,
            args.eod_mask_loss)
        neighbor_attention_mask = None
        return tokens, labels, loss_mask, attention_mask, position_ids, \
            neighbor_tokens, neighbor_attention_mask, neighbor_position_ids
    else:
        return tokens, labels, loss_mask, attention_mask, position_ids


def loss_func(loss_mask, output_tensor):
    losses = output_tensor.float()
    loss_mask = loss_mask.view(-1).float()
    loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()

    # Reduce loss for logging.
    averaged_loss = average_losses_across_data_parallel_group([loss])

    return loss, {'lm loss': averaged_loss[0]}


def forward_step(data_iterator, model):
    """Forward step."""
    args = get_args()
    timers = get_timers()

    if args.retro_add_retriever:
        timers('batch-generator', log_level=2).start()
        tokens, labels, loss_mask, attention_mask, position_ids, \
            neighbor_tokens, neighbor_attention_mask, neighbor_position_ids = get_batch(
            data_iterator)
        timers('batch-generator').stop()
        output_tensor = model(tokens, position_ids, attention_mask,
                              retriever_input_ids=neighbor_tokens,
                              retriever_position_ids=neighbor_position_ids,
                              retriever_attn_mask=neighbor_attention_mask,
                              labels=labels)
    else:
        timers('batch-generator', log_level=2).start()
        tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
            data_iterator)
        timers('batch-generator').stop()
        output_tensor = model(tokens, position_ids, attention_mask,
                              labels=labels)

    return output_tensor, partial(loss_func, loss_mask)


def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid, and test datasets."""
    args = get_args()
    retro_args = get_retro_args()

    tokenizer = get_tokenizer()

    def fix_and_split_blend_pair(pair):
        weight, name = pair
        return [
            [weight, os.path.join(args.data_folder, name, f"{name}_QA_train.json")],
            [weight, os.path.join(args.data_folder, name, f"{name}_QA_dev.json")],
            None,
        ]

    blend = [args.data_path[i:i+2] for i in range(0, len(args.data_path), 2)]

    if len(blend) == 1:
        blend_per_split =  [
            os.path.join(args.data_folder, blend[0], f"{blend[0]}_QA_train.json"),
            os.path.join(args.data_folder, blend[0], f"{blend[0]}_QA_dev.json"),
            None,
        ]
    else:
        blend_per_split = [
            list(
                reduce(
                    lambda x, y: x + y,
                    list(zip(*map(fix_and_split_blend_pair, blend)))[0]
                )
            ),
            None,
            None,
        ]

    blend_per_split = [get_blend_from_list(blend) for blend in blend_per_split]

    extra_kwargs = {}

    if args.retro_add_retriever:
        dataset_cls = RetroJsonQADataset
        config_cls = RetroJsonQADatasetConfig
        extra_kwargs["retro_num_neighbors"] = args.retro_num_neighbors
        extra_kwargs["retro_gpt_retrieved_length"] = retro_args.retro_gpt_retrieved_length
    else:
        dataset_cls = JsonQADataset
        config_cls = JsonQADatasetConfig

    config = config_cls(
        random_seed=args.seed,
        sequence_length=args.seq_length,
        blend_per_split=blend_per_split,
        split=args.split,
        path_to_cache=args.data_cache_path,
        tokenizer=tokenizer,
        ft_neighbours=args.ft_neighbours,
        bert_retriever_neighbours=args.bert_retriever_neighbours,
        longform_answer=args.longform_answer,
        inference_only=False,
        retrieved_neighbours=False,
        fix_newsqa=True,
        **extra_kwargs
    )

    print_rank_0('> building train, validation, and test datasets '
                 'for GPT ...')
    train_ds, valid_ds, test_ds = BlendedMegatronDatasetBuilder(
        dataset_cls,
        train_val_test_num_samples,
        is_dataset_built_on_rank,
        config
    ).build()
    print_rank_0("> finished creating GPT datasets ...")

    return train_ds, valid_ds, test_ds


if __name__ == "__main__":

    # Temporary for transition to core datasets
    train_valid_test_datasets_provider.is_distributed = True

    pretrain(train_valid_test_datasets_provider, model_provider,
        ModelType.retro_decoder,  # ModelType.encoder_or_decoder,
        forward_step,
        extra_args_provider=get_tasks_args
    )