checkpointing.py 40.8 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.

"""Input/output checkpointing."""

import os
import random
import sys
import numpy as np

import torch

from megatron.training import update_num_microbatches
from megatron.core import mpu, tensor_parallel, dist_checkpointing
from megatron.core.dist_checkpointing.mapping import ShardedObject
from megatron.core.dist_checkpointing.serialization import get_default_load_sharded_strategy
from megatron.core.dist_checkpointing.strategies.fully_parallel import \
    FullyParallelSaveStrategyWrapper, FullyParallelLoadStrategyWrapper
from .async_utils import schedule_async_save
from .global_vars import get_args
from .utils import unwrap_model, print_rank_0, append_to_progress_log
from ..core.dist_checkpointing.serialization import \
    get_default_save_sharded_strategy

# [ModelOpt]: Import
try:
    from modelopt.torch.opt.plugins import (
        save_modelopt_state,
        save_sharded_modelopt_state,
        restore_modelopt_state,
        restore_sharded_modelopt_state,
    )
    has_nvidia_modelopt = True
except Exception:
    has_nvidia_modelopt = False

_CHECKPOINT_VERSION = None


def set_checkpoint_version(value):
    global _CHECKPOINT_VERSION
    if _CHECKPOINT_VERSION is not None:
        assert _CHECKPOINT_VERSION == value, \
            "checkpoint versions do not match"
    _CHECKPOINT_VERSION = value


def get_checkpoint_version():
    global _CHECKPOINT_VERSION
    return _CHECKPOINT_VERSION


def check_checkpoint_args(checkpoint_args):
    """Ensure fixed arguments for a model are the same for the input
    arguments and the one retrieved from checkpoint."""
    args = get_args()

    def _compare(arg_name, old_arg_name=None, default=None):
        if old_arg_name is not None:
            ckpt_arg_name = old_arg_name
        else:
            ckpt_arg_name = arg_name
        if default is not None:
            checkpoint_value = getattr(checkpoint_args, ckpt_arg_name, default)
        else:
            checkpoint_value = getattr(checkpoint_args, ckpt_arg_name)
        args_value = getattr(args, arg_name)
        error_message = '{} value from checkpoint ({}) is not equal to the ' \
                        'input argument value ({}).'.format(
                            arg_name, checkpoint_value, args_value)
        assert checkpoint_value == args_value, error_message

    _compare('num_layers')
    _compare('hidden_size')
    _compare('num_attention_heads')
    _compare('add_position_embedding', default=True)
    if args.vocab_file:
        _compare('max_position_embeddings')
        _compare('make_vocab_size_divisible_by')
        if not args.use_dist_ckpt:
            _compare('padded_vocab_size')
        _compare('tokenizer_type')
    if args.data_parallel_random_init:
        _compare('data_parallel_random_init')
    if get_checkpoint_version() < 3.0:
        _compare('tensor_model_parallel_size',
                 old_arg_name='model_parallel_size')
    if get_checkpoint_version() >= 3.0 and not args.use_dist_ckpt:
        _compare('tensor_model_parallel_size')
        _compare('pipeline_model_parallel_size')

def ensure_directory_exists(filename, check_parent=True):
    """Build filename's path if it does not already exists."""
    dirname = os.path.dirname(filename) if check_parent else filename
    os.makedirs(dirname, exist_ok=True)


def get_checkpoint_name(checkpoints_path, iteration, release=False,
                        pipeline_parallel=None,
                        tensor_rank=None, pipeline_rank=None,
                        expert_parallel=None, expert_rank=None,
                        return_base_dir=False):
    """Determine the directory name for this rank's checkpoint."""
    if release:
        directory = 'release'
    else:
        directory = 'iter_{:07d}'.format(iteration)
    if return_base_dir:
        common_path = os.path.join(checkpoints_path, directory)
        return common_path

    # Use both the tensor and pipeline MP rank.
    if pipeline_parallel is None:
        pipeline_parallel = (mpu.get_pipeline_model_parallel_world_size() > 1)
    if tensor_rank is None:
        tensor_rank = mpu.get_tensor_model_parallel_rank()
    if pipeline_rank is None:
        pipeline_rank = mpu.get_pipeline_model_parallel_rank()
    if expert_parallel is None:
        expert_parallel = (mpu.get_expert_model_parallel_world_size() > 1)
    if expert_rank is None:
        expert_rank = mpu.get_expert_model_parallel_rank()

    # Use both the tensor and pipeline MP rank. If using the distributed
    # optimizer, then the optimizer's path must additionally include the
    # data parallel rank.
    if not pipeline_parallel:
        common_path = os.path.join(checkpoints_path, directory,
                            f'mp_rank_{tensor_rank:02d}')
    else:
        common_path = os.path.join(checkpoints_path, directory,
                f'mp_rank_{tensor_rank:02d}_{pipeline_rank:03d}')

    if expert_parallel:
        common_path = common_path + f'_{expert_rank:03d}'

    return os.path.join(common_path, "model_optim_rng.pt")


def get_distributed_optimizer_checkpoint_name(model_checkpoint_name):
    return os.path.join(os.path.dirname(model_checkpoint_name),
                        "distrib_optim.pt")


def find_checkpoint_rank_0(checkpoints_path, iteration, release=False):
    """Finds the checkpoint for rank 0 without knowing if we are using
    pipeline parallelism/expert parallelism or not.

    Since the checkpoint naming scheme changes if pipeline or expert
    parallelism is present, we need to look for both naming schemes if
    we don't know if the checkpoint has pipeline or expert parallelism.
    """

    # Look for checkpoint with no pipelining and no expert parallelism
    filename = get_checkpoint_name(checkpoints_path, iteration, release,
                                   pipeline_parallel=False,
                                   tensor_rank=0, pipeline_rank=0,
                                   expert_parallel=False, expert_rank=0)
    if os.path.isfile(filename):
        return filename

    # Look for checkpoint with no pipelining and expert parallelism
    filename = get_checkpoint_name(checkpoints_path, iteration, release,
                                   pipeline_parallel=False,
                                   tensor_rank=0, pipeline_rank=0,
                                   expert_parallel=True, expert_rank=0)
    if os.path.isfile(filename):
        return filename

    # Look for checkpoint with pipelining and no expert parallelism
    filename = get_checkpoint_name(checkpoints_path, iteration, release,
                                   pipeline_parallel=True,
                                   tensor_rank=0, pipeline_rank=0,
                                   expert_parallel=False, expert_rank=0)
    if os.path.isfile(filename):
        return filename

    # Look for checkpoint with pipelining and expert parallelism
    filename = get_checkpoint_name(checkpoints_path, iteration, release,
                                   pipeline_parallel=True,
                                   tensor_rank=0, pipeline_rank=0,
                                   expert_parallel=True, expert_rank=0)
    if os.path.isfile(filename):
        return filename

    # Look for a distributed checkpoint
    filename = get_checkpoint_name(checkpoints_path, iteration, release,
                                   pipeline_parallel=True,
                                   return_base_dir=True)
    if dist_checkpointing.check_is_distributed_checkpoint(filename):
        return filename

    return None


def get_checkpoint_tracker_filename(checkpoints_path):

    """Tracker file rescords the latest chckpoint during
    training to restart from."""
    return os.path.join(checkpoints_path, 'latest_checkpointed_iteration.txt')


def checkpoint_exists(checkpoints_path):
    if checkpoints_path is None:
        return False
    load_step = 'latest_checkpointed_iteration.txt'
    return os.path.exists(os.path.join(checkpoints_path, load_step))


def read_metadata(tracker_filename):
    # Read the tracker file and either set the iteration or
    # mark it as a release checkpoint.
    iteration = 0
    release = False
    with open(tracker_filename, 'r') as f:
        metastring = f.read().strip()
        try:
            iteration = int(metastring)
        except ValueError:
            release = metastring == 'release'
            if not release:
                print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format(
                    tracker_filename))
                sys.exit()
    assert iteration > 0 or release, 'error parsing metadata file {}'.format(
        tracker_filename)

    # Get the max iteration retrieved across the ranks.
    if torch.distributed.is_initialized():
        iters_cuda = torch.tensor([iteration], dtype=torch.long, device='cuda')
        torch.distributed.all_reduce(iters_cuda, op=torch.distributed.ReduceOp.MAX)
        max_iter = iters_cuda[0].item()

        # We should now have all the same iteration.
        # If not, print a warning and chose the maximum
        # iteration across all ranks.
        if iteration != max_iter:
            rank = torch.distributed.get_rank()
            print('WARNING: on rank {} found iteration {} in the '
                  'metadata while max iteration across the ranks '
                  'is {}, replacing it with max iteration.'.format(
                      rank, iteration, max_iter), flush=True)
    else:
        # When loading a checkpoint outside of training (for example,
        # when editing it), we might not have torch distributed
        # initialized, in this case, just assume we have the latest
        max_iter = iteration
    return max_iter, release


def get_rng_state(use_dist_ckpt: bool = False):
    """ collect rng state across data parallel ranks """
    args = get_args()
    rng_state = {
        'random_rng_state': random.getstate(),
        'np_rng_state': np.random.get_state(),
        'torch_rng_state': torch.get_rng_state(),
        'cuda_rng_state': torch.cuda.get_rng_state(),
        'rng_tracker_states': tensor_parallel.get_cuda_rng_tracker().get_states()}

    rng_state_list = None
    if torch.distributed.is_initialized() and \
            mpu.get_data_parallel_world_size() > 1 and \
            args.data_parallel_random_init:
        rng_state_list = \
            [None for i in range(mpu.get_data_parallel_world_size())]
        torch.distributed.all_gather_object(
            rng_state_list,
            rng_state,
            group=mpu.get_data_parallel_group())
    else:
        rng_state_list = [rng_state]

    if use_dist_ckpt:
        pp_rank = mpu.get_pipeline_model_parallel_rank()
        pp_size = mpu.get_pipeline_model_parallel_world_size()
        tp_rank = mpu.get_tensor_model_parallel_rank()
        tp_size = mpu.get_tensor_model_parallel_world_size()
        rng_state_list = ShardedObject('rng_state', rng_state_list, (pp_size, tp_size), (pp_rank, tp_rank),
                                       replica_id=mpu.get_data_parallel_rank(with_context_parallel=True))

    return rng_state_list


def save_checkpoint(iteration, model, optimizer, opt_param_scheduler,
                    num_floating_point_operations_so_far, checkpointing_context=None):
    """Save a model checkpoint.

    Checkpointing context is used to persist some checkpointing state
    throughout a single job. Must be initialized externally (not used if None).
    """
    args = get_args()

    # Only rank zero of the data parallel writes to the disk.
    model = unwrap_model(model)

    ckpt_format = args.dist_ckpt_format if args.use_dist_ckpt else 'torch'
    print_rank_0('saving checkpoint at iteration {:7d} to {} in {} format'.format(
        iteration, args.save, ckpt_format))

    # Collect rng state across data parallel ranks.
    rng_state = get_rng_state(args.use_dist_ckpt)

    # Checkpoint name.
    checkpoint_name = get_checkpoint_name(args.save, iteration, return_base_dir=args.use_dist_ckpt)

    # Save distributed optimizer's custom parameter state.
    if args.use_distributed_optimizer and not args.no_save_optim and optimizer is not None and not args.use_dist_ckpt:
        optim_checkpoint_name = \
            get_distributed_optimizer_checkpoint_name(checkpoint_name)
        ensure_directory_exists(optim_checkpoint_name)
        optimizer.save_parameter_state(optim_checkpoint_name)

    async_save_request = None
    if args.async_save:
        if not args.use_dist_ckpt:
            raise NotImplementedError('Async checkpoint save not implemented for legacy checkpoints')
        elif args.dist_ckpt_format != 'torch_dist':
            raise NotImplementedError(f'Async checkpoint save not implemented for {args.dist_ckpt_format} distributed checkpoint format')

    # Collect args, model, RNG.
    if not torch.distributed.is_initialized() \
            or mpu.get_data_modulo_expert_parallel_rank() == 0 \
            or args.use_dist_ckpt:

        optim_sd_kwargs = {}
        if args.use_dist_ckpt and args.use_distributed_optimizer:
            optim_sd_kwargs['sharding_type'] = ('fully_sharded_model_space'
                                                if args.ckpt_fully_parallel_save
                                                else 'dp_zero_gather_scatter')
            print_rank_0(f'Storing distributed optimizer sharded state of type {optim_sd_kwargs["sharding_type"]}')
        state_dict = generate_state_dict(args, model, optimizer, opt_param_scheduler, rng_state,
                                         args.use_dist_ckpt, iteration, optim_sd_kwargs=optim_sd_kwargs)

        state_dict['num_floating_point_operations_so_far'] = num_floating_point_operations_so_far
        if args.use_dist_ckpt:
            if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
                ensure_directory_exists(checkpoint_name, check_parent=False)
            validate_sharding_integrity = True
            save_strategy = (checkpointing_context or {}).get('save_strategy',
                                                              get_default_save_sharded_strategy(args.dist_ckpt_format))
            if args.ckpt_fully_parallel_save:
                if checkpointing_context is not None and 'save_strategy' in checkpointing_context:
                    # Already saved once before - don't need to rerun sharding validation
                    validate_sharding_integrity = not args.ckpt_assume_constant_structure
                else:
                    save_strategy = FullyParallelSaveStrategyWrapper(save_strategy, mpu.get_data_parallel_group(with_context_parallel=True),
                                                                     args.ckpt_assume_constant_structure)
            # Store save strategy for future checkpoint saves
            if checkpointing_context is not None:
                checkpointing_context['save_strategy'] = save_strategy
            async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
                                                         async_sharded_save=args.async_save)

            # [ModelOpt]: save sharded modelopt_state
            if has_nvidia_modelopt:
                save_sharded_modelopt_state(model, checkpoint_name, (args.dist_ckpt_format, 1))
        else:
            # [ModelOpt]: Inject modelopt_state into state_dict
            if has_nvidia_modelopt:
                save_modelopt_state(model, state_dict)

            # Save.
            ensure_directory_exists(checkpoint_name)
            torch.save(state_dict, checkpoint_name)

    if not args.async_save:
        assert async_save_request is None
        # Wait so everyone is done (necessary)
        if torch.distributed.is_initialized():
            torch.distributed.barrier()

    # And update the latest iteration
    if not torch.distributed.is_initialized() \
       or torch.distributed.get_rank() == 0:
        tracker_filename = get_checkpoint_tracker_filename(args.save)

        def iter_finalize_fn():
            with open(tracker_filename, 'w') as f:
                f.write(str(iteration))
            print_rank_0('  successfully saved checkpoint from iteration {:7d} to {}'
                         .format(iteration, args.save))
            if args.log_progress and args.async_save:
                append_to_progress_log(f'Saved async checkpoint\tIteration: {iteration}',
                                       barrier=False)

        if args.async_save:
            assert async_save_request is not None
            async_save_request.add_finalize_fn(iter_finalize_fn)
        else:
            iter_finalize_fn()

    if args.async_save:
        schedule_async_save(async_save_request)
        print_rank_0('  scheduled an async checkpoint save at iteration {:7d} to {}' \
                     .format(iteration, args.save))

    # Wait so everyone is done (not necessary)
    if torch.distributed.is_initialized():
        torch.distributed.barrier()


def generate_state_dict(args, model, optimizer, opt_param_scheduler,
                        rng_state, use_dist_ckpt=False, iteration=None,
                        optim_sd_kwargs=None):
    # Arguments, iteration, and model.
    state_dict = {}
    state_dict['args'] = args
    state_dict['checkpoint_version'] = 3.0
    if iteration is not None:
        state_dict['iteration'] = iteration

    if len(model) == 1:
        state_dict['model'] = (model[0].sharded_state_dict()
                               if use_dist_ckpt else
                               model[0].state_dict_for_save_checkpoint())
    else:
        for i in range(len(model)):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
            state_dict['model%d' % i] = (
                model[i].sharded_state_dict()
                if use_dist_ckpt else
                model[i].state_dict_for_save_checkpoint())
    # Optimizer stuff.
    if not args.no_save_optim:
        if optimizer is not None:
            state_dict['optimizer'] = (optimizer.sharded_state_dict(state_dict, **(optim_sd_kwargs or {}))
                                       if use_dist_ckpt else
                                       optimizer.state_dict())
        if opt_param_scheduler is not None:
            state_dict['opt_param_scheduler'] = \
                opt_param_scheduler.state_dict()
    # RNG states.
    if not args.no_save_rng:
        state_dict["rng_state"] = rng_state
    return state_dict


def _transpose_first_dim(t, num_splits, num_splits_first, model):
    input_shape = t.size()
    # We use a self_attention module but the values extracted aren't
    # specific to self attention so should work for cross attention as well
    while hasattr(model, 'module'):
        model = model.module
    attention_module = model.language_model.encoder.layers[0].self_attention
    hidden_size_per_attention_head = attention_module.hidden_size_per_attention_head
    num_attention_heads_per_partition = attention_module.num_attention_heads_per_partition
    if num_splits_first:
        """[num_splits * np * hn, h]
        -->(view) [num_splits, np, hn, h]
        -->(tranpose) [np, num_splits, hn, h]
        -->(view) [np * num_splits * hn, h] """

        intermediate_shape = \
            (num_splits, num_attention_heads_per_partition,
             hidden_size_per_attention_head) + input_shape[1:]

        t = t.view(*intermediate_shape)
        t = t.transpose(0, 1).contiguous()
    else:
        """[np * hn * num_splits, h]
        -->(view) [np, hn, num_splits, h]
        -->(tranpose) [np, num_splits, hn, h]
        -->(view) [np * num_splits * hn, h] """

        intermediate_shape = \
            (num_attention_heads_per_partition,
             hidden_size_per_attention_head, num_splits) +\
             input_shape[1:]

        t = t.view(*intermediate_shape)
        t = t.transpose(1, 2).contiguous()
    t = t.view(*input_shape)

    return t


def fix_query_key_value_ordering(model, checkpoint_version):
    """Fix up query/key/value matrix ordering if checkpoint
    version is smaller than 2.0
    """
    if checkpoint_version < 2.0:
        if isinstance(model, list):
            assert len(model)==1
            model = model[0]
        for name, param in model.named_parameters():
            if name.endswith(('.query_key_value.weight', '.query_key_value.bias')):
                if checkpoint_version == 0:
                    fixed_param = _transpose_first_dim(param.data, 3, True, model)
                elif checkpoint_version == 1.0:
                    fixed_param = _transpose_first_dim(param.data, 3, False, model)
                else:
                    print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
                    sys.exit()
                param.data.copy_(fixed_param)
            if name.endswith(('.key_value.weight', '.key_value.bias')):
                if checkpoint_version == 0:
                    fixed_param = _transpose_first_dim(param.data, 2, True, model)
                elif checkpoint_version == 1.0:
                    fixed_param = _transpose_first_dim(param.data, 2, False, model)
                else:
                    print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
                    sys.exit()
                param.data.copy_(fixed_param)
        print_rank_0(" succesfully fixed query-key-values ordering for"
                     " checkpoint version {}".format(checkpoint_version))


def _load_base_checkpoint(load_dir, rank0=False, sharded_state_dict=None,
                          exit_on_missing_checkpoint=False, checkpoint_step = None):
    """ Load the base state_dict from the given directory

    If rank0 is true, just loads rank 0 checkpoint, ignoring arguments.
    """
    # Read the tracker file and set the iteration.
    tracker_filename = get_checkpoint_tracker_filename(load_dir)

    # If no tracker file, return nothing
    if not os.path.isfile(tracker_filename):
        if not rank0:
            print_rank_0('WARNING: could not find the metadata file {} '.format(
                tracker_filename))
            print_rank_0('    will not load any checkpoints and will start from '
                         'random')

        # Conditionally exit if checkpoint not found.
        if exit_on_missing_checkpoint:
            print_rank_0(">> '--exit-on-missing-checkpoint' set ... exiting. <<")
            if torch.distributed.is_initialized():
                torch.distributed.barrier()
            sys.exit()

        return None, "", False

    # Otherwise, read the tracker file and either set the iteration or
    # mark it as a release checkpoint.
    if checkpoint_step is not None:
        iteration = checkpoint_step
        release = False
    else:
        iteration, release = read_metadata(tracker_filename)

    # Checkpoint.
    if rank0:
        checkpoint_name = find_checkpoint_rank_0(load_dir, iteration, release)
        is_dist_ckpt = checkpoint_name is not None and dist_checkpointing.check_is_distributed_checkpoint(checkpoint_name)
    else:
        checkpoint_name = get_checkpoint_name(load_dir, iteration, release,
                                              return_base_dir=True)
        is_dist_ckpt = dist_checkpointing.check_is_distributed_checkpoint(checkpoint_name)
        if not is_dist_ckpt:
            checkpoint_name = get_checkpoint_name(load_dir, iteration, release,
                                                  return_base_dir=False)
        dist_infix = "distributed " if is_dist_ckpt else ""
        if release:
            print_rank_0(f' loading release {dist_infix}checkpoint from {load_dir}')
        else:
            print_rank_0(f' loading {dist_infix}checkpoint from {load_dir} at iteration {iteration}')

    # Load the checkpoint.
    if is_dist_ckpt:
        if rank0:
            state_dict = dist_checkpointing.load_common_state_dict(checkpoint_name)
            return state_dict, checkpoint_name, release

        # at this point args are available
        args = get_args()
        if sharded_state_dict is None:
            assert not args.auto_detect_ckpt_format and not args.use_dist_ckpt, (args.auto_detect_ckpt_format, args.use_dist_ckpt)
            raise RuntimeError('Detected load from a distributed checkpoint, but neither --use-dist-ckpt nor --auto-detect-ckpt-format is set.')

        load_strategy = get_default_load_sharded_strategy(checkpoint_name)
        if args.ckpt_fully_parallel_load:
            load_strategy = FullyParallelLoadStrategyWrapper(load_strategy,
                                                             mpu.get_data_parallel_group(with_context_parallel=True))
        state_dict = dist_checkpointing.load(sharded_state_dict, checkpoint_name, load_strategy)
        return state_dict, checkpoint_name, release

    try:
        state_dict = torch.load(checkpoint_name, map_location='cpu')
    except ModuleNotFoundError:
        from megatron.legacy.fp16_deprecated import loss_scaler
        # For backward compatibility.
        if not rank0:
            print_rank_0(' > deserializing using the old code structure ...')
        sys.modules['fp16.loss_scaler'] = sys.modules[
            'megatron.legacy.fp16_deprecated.loss_scaler']
        sys.modules['megatron.fp16.loss_scaler'] = sys.modules[
            'megatron.legacy.fp16_deprecated.loss_scaler']
        sys.modules['megatron.model'] = sys.modules['megatron.legacy.model']
        state_dict = torch.load(checkpoint_name, map_location='cpu')
        sys.modules.pop('fp16.loss_scaler', None)
        sys.modules.pop('megatron.fp16.loss_scaler', None)
        sys.modules.pop('megatron.model', None)
    except BaseException as e:
        print_rank_0('could not load the checkpoint')
        print_rank_0(e)
        sys.exit()

    return state_dict, checkpoint_name, release


def load_args_from_checkpoint(args, load_arg='load',
                              exit_on_missing_checkpoint=False):
    """Set required arguments from the checkpoint specified in the
    arguments.

    Will overwrite arguments that have a non-None default value, but
    will leave any arguments that default to None as set.

    Returns the same args NameSpace with the new values added/updated.

    If no checkpoint is specified in args, or if the checkpoint is
    there but invalid, the arguments will not be modified

    """
    load_dir = getattr(args, load_arg)

    if load_dir is None:
        print_rank_0('No load directory specified, using provided arguments.')
        return args

    state_dict, checkpoint_name, release = _load_base_checkpoint(
        load_dir,
        rank0=True,
        exit_on_missing_checkpoint=exit_on_missing_checkpoint,
        checkpoint_step=args.ckpt_step
    )

    # Args.
    if not state_dict:
        print_rank_0('Checkpoint not found to provide arguments, using provided arguments.')
        return args

    if 'args' not in state_dict:
        print_rank_0('Checkpoint provided does not have arguments saved, using provided arguments.')
        return args

    checkpoint_args = state_dict['args']
    checkpoint_version = state_dict.get('checkpoint_version', 0)
    args.iteration = state_dict['iteration']

    # One-off conversion for foundation models
    if hasattr(checkpoint_args, 'disable_bias_linear'):
        setattr(checkpoint_args, 'add_bias_linear', not getattr(checkpoint_args, 'disable_bias_linear'))

    def _set_arg(arg_name, old_arg_name=None, force=False):
        if not force and getattr(args, arg_name, None) is not None:
            return

        if old_arg_name is not None:
            checkpoint_value = getattr(checkpoint_args, old_arg_name, None)
        else:
            checkpoint_value = getattr(checkpoint_args, arg_name, None)

        if checkpoint_value is not None:
            print_rank_0(f"Setting {arg_name} to {checkpoint_value} from checkpoint")
            setattr(args, arg_name, checkpoint_value)
        else:
            print_rank_0(f"Checkpoint did not provide arguments {arg_name}")

    _set_arg('num_layers')
    _set_arg('hidden_size')
    _set_arg('ffn_hidden_size')
    _set_arg('seq_length')
    _set_arg('num_attention_heads')
    _set_arg('num_query_groups', force=True)
    _set_arg('group_query_attention', force=True)
    _set_arg('kv_channels')
    _set_arg('max_position_embeddings')
    _set_arg('position_embedding_type', force=True)
    _set_arg('add_position_embedding', force=True)
    _set_arg('use_rotary_position_embeddings', force=True)
    _set_arg('rotary_percent', force=True)
    _set_arg('rotary_interleaved', force=True)
    _set_arg('add_bias_linear', force=True)
    _set_arg('add_qkv_bias', force=True)
    _set_arg('swiglu', force=True)
    _set_arg('untie_embeddings_and_output_weights', force=True)
    _set_arg('apply_layernorm_1p', force=True)
    _set_arg('normalization', force=True)
    _set_arg('tokenizer_type')
    _set_arg('padded_vocab_size')
    _set_arg('apply_query_key_layer_scaling', force=True)
    if checkpoint_version < 3.0:
        _set_arg('tensor_model_parallel_size',
                 'model_parallel_size')
    else:
        _set_arg('tensor_model_parallel_size', force=True)
        _set_arg('pipeline_model_parallel_size', force=True)
        _set_arg('virtual_pipeline_model_parallel_size', force=True)
        _set_arg('num_layers_per_virtual_pipeline_stage')
    return args, checkpoint_args


def load_checkpoint(model, optimizer, opt_param_scheduler, load_arg='load', strict=True):
    """Load a model checkpoint and return the iteration.
    strict (bool): whether to strictly enforce that the keys in
        :attr:`state_dict` of the checkpoint match the names of
        parameters and buffers in model.
    """
    args = get_args()
    load_dir = getattr(args, load_arg)

    # Finetuning directories
    pretrained_dir = getattr(args,'pretrained_checkpoint', None)
    if pretrained_dir is not None and not checkpoint_exists(load_dir):
        print_rank_0(f'Checkpoint file not found in load directory {load_dir} attempting to finetune with checkpoint in {pretrained_dir}')
        load_dir = pretrained_dir
        if not checkpoint_exists(load_dir):
            raise FileNotFoundError("No checkpoint found in load directory or pretrained directory")
        args.finetune = True


    model = unwrap_model(model)

    load_kwargs = {}
    is_dist_ckpt = False
    if args.auto_detect_ckpt_format or args.use_dist_ckpt:
        state_dict, checkpoint_name, release = _load_base_checkpoint(load_dir, rank0=True, exit_on_missing_checkpoint=args.exit_on_missing_checkpoint)
        is_dist_ckpt = dist_checkpointing.check_is_distributed_checkpoint(checkpoint_name)
        if is_dist_ckpt:
            ckpt_tp_pp = (state_dict['args'].tensor_model_parallel_size, state_dict['args'].pipeline_model_parallel_size)
            run_tp_pp = (mpu.get_tensor_model_parallel_world_size(), mpu.get_pipeline_model_parallel_world_size())
            mismatch_msg = "(TP, PP) mismatch after resume ({} vs {} from checkpoint)".format(ckpt_tp_pp, run_tp_pp)

            # Determine if RNG state will be loaded
            if (ckpt_tp_pp == run_tp_pp and not release and not args.finetune and not args.no_load_rng
                    and not getattr(state_dict['args'], 'no_save_rng', False)):
                gen_sd_rng_state = get_rng_state(True)  # we can load the rng state
            else:
                gen_sd_rng_state = None
                if ckpt_tp_pp != run_tp_pp:
                    print_rank_0("{}: RNG state will be ignored".format(mismatch_msg))

            optim_sd_kwargs = dict(is_loading=True)
            # Determine if optimizer state will be loaded
            if (not release and not args.finetune and not args.no_load_optim
                    and not getattr(state_dict['args'], 'no_save_optim', False)):
                gen_sd_optim = optimizer
                gen_sd_opt_param_scheduler = opt_param_scheduler

                # TODO: add DistributedOptimizer support for differing TPxPP
                if ckpt_tp_pp != run_tp_pp and args.use_distributed_optimizer:
                    raise RuntimeError("{}: not supported for DistributedOptimizer".format(mismatch_msg))


                if args.use_distributed_optimizer:
                    optim_sd_kwargs['sharding_type'] = ('fully_sharded_model_space'
                                                        if getattr(state_dict['args'], 'ckpt_fully_parallel_save', False)
                                                        else 'dp_zero_gather_scatter')
                    # This is for backwards-compatibility. Can be removed once 'fully_sharded_bucket_space' loading is removed
                    for maybe_dist_opt_optim_state in (state_dict['optimizer'], *state_dict['optimizer'].values()):
                        if 'param_state_sharding_type' in maybe_dist_opt_optim_state:
                            if maybe_dist_opt_optim_state['param_state_sharding_type'] == 'fully_sharded_bucket_space':
                                print_rank_0('Detected deprecated `fully_sharded_bucket_space` DistributedOptimizer checkpoint format')
                                optim_sd_kwargs['sharding_type'] = maybe_dist_opt_optim_state['param_state_sharding_type']
                            break
            else:
                gen_sd_optim = None
                gen_sd_opt_param_scheduler = None
            load_kwargs['sharded_state_dict'] = generate_state_dict(args, model, gen_sd_optim, gen_sd_opt_param_scheduler,
                                                                    gen_sd_rng_state, True, optim_sd_kwargs=optim_sd_kwargs)
            load_kwargs['exit_on_missing_checkpoint'] = args.exit_on_missing_checkpoint

    state_dict, checkpoint_name, release = _load_base_checkpoint(load_dir, rank0=False, **load_kwargs)

    # Checkpoint not loaded.
    if state_dict is None:
        # Iteration and num_floating_point_operations_so_far default to 0.
        return 0, 0

    # Set checkpoint version.
    set_checkpoint_version(state_dict.get('checkpoint_version', 0))

    # Set iteration.
    if args.finetune or release:
        iteration = 0
    else:
        try:
            iteration = state_dict['iteration']
        except KeyError:
            try:  # Backward compatible with older checkpoints
                iteration = state_dict['total_iters']
            except KeyError:
                print_rank_0('A metadata file exists but unable to load '
                             'iteration from checkpoint {}, exiting'.format(checkpoint_name))
                sys.exit()
    num_floating_point_operations_so_far = state_dict.get('num_floating_point_operations_so_far', 0)

    # Check arguments.
    assert args.consumed_train_samples == 0
    assert args.consumed_valid_samples == 0
    if 'args' in state_dict and not args.finetune:
        checkpoint_args = state_dict['args']
        check_checkpoint_args(checkpoint_args)
        args.consumed_train_samples = getattr(checkpoint_args,
                                              'consumed_train_samples', 0)
        update_num_microbatches(consumed_samples=args.consumed_train_samples)
        args.consumed_valid_samples = getattr(checkpoint_args,
                                              'consumed_valid_samples', 0)
    else:
        print_rank_0('could not find arguments in the checkpoint ...')

    # [ModelOpt]: loading modelopt_state (sharded or not)
    if has_nvidia_modelopt:
        if args.use_dist_ckpt:
            restore_sharded_modelopt_state(model, checkpoint_name)
        else:
            restore_modelopt_state(model, state_dict)

    # Model.
    strict = False if args.retro_add_retriever else strict
    if len(model) == 1:
        model[0].load_state_dict(state_dict['model'], strict=strict)
    else:
        for i in range(len(model)):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
            model[i].load_state_dict(state_dict['model%d' % i], strict=strict)

    # Fix up query/key/value matrix ordering if needed.
    checkpoint_version = get_checkpoint_version()
    print_rank_0(f' checkpoint version {checkpoint_version}')
    fix_query_key_value_ordering(model, checkpoint_version)

    # Optimizer.
    if not release and not args.finetune and not args.no_load_optim:
        try:
            # Load state dict.
            if optimizer is not None:
                optimizer.load_state_dict(state_dict['optimizer'])

            # Load distributed optimizer's custom parameter state.
            # For distributed checkpoint it's already loaded in load_state_dict above
            if args.use_distributed_optimizer and not is_dist_ckpt:
                tracker_filename = get_checkpoint_tracker_filename(load_dir)
                iteration, release = read_metadata(tracker_filename)
                model_checkpoint_name = \
                    get_checkpoint_name(load_dir, iteration, release)
                optim_checkpoint_name = \
                    get_distributed_optimizer_checkpoint_name(
                        model_checkpoint_name)
                optimizer.load_parameter_state(optim_checkpoint_name)

            # Load scheduler.
            if opt_param_scheduler is not None:
                if 'lr_scheduler' in state_dict: # backward compatbility
                    opt_param_scheduler.load_state_dict(state_dict['lr_scheduler'])
                else:
                    opt_param_scheduler.load_state_dict(state_dict['opt_param_scheduler'])
        except KeyError:
            print_rank_0('Unable to load optimizer from checkpoint {}. '
                         'Specify --no-load-optim or --finetune to prevent '
                         'attempting to load the optimizer state, '
                         'exiting ...'.format(checkpoint_name))
            sys.exit()
    else:
        if (args.fp16 or args.bf16) and optimizer is not None:
            optimizer.reload_model_params()

    # rng states.
    if not release and not args.finetune and not args.no_load_rng:
        try:
            if 'rng_state' in state_dict:
                # access rng_state for data parallel rank
                if args.data_parallel_random_init:
                    rng_state = state_dict['rng_state'][mpu.get_data_parallel_rank()]
                else:
                    rng_state = state_dict['rng_state'][0]
                random.setstate(rng_state['random_rng_state'])
                np.random.set_state(rng_state['np_rng_state'])
                torch.set_rng_state(rng_state['torch_rng_state'])
                torch.cuda.set_rng_state(rng_state['cuda_rng_state'])
                # Check for empty states array
                if not rng_state['rng_tracker_states']:
                    raise KeyError
                tensor_parallel.get_cuda_rng_tracker().set_states(
                    rng_state['rng_tracker_states'])
            else:  # backward compatability
                random.setstate(state_dict['random_rng_state'])
                np.random.set_state(state_dict['np_rng_state'])
                torch.set_rng_state(state_dict['torch_rng_state'])
                torch.cuda.set_rng_state(state_dict['cuda_rng_state'])
                # Check for empty states array
                if not state_dict['rng_tracker_states']:
                    raise KeyError
                tensor_parallel.get_cuda_rng_tracker().set_states(
                    state_dict['rng_tracker_states'])
        except KeyError:
            print_rank_0('Unable to load rng state from checkpoint {}. '
                         'Specify --no-load-rng or --finetune to prevent '
                         'attempting to load the rng state, '
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

    # Some utilities want to load a checkpoint without distributed being initialized
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    print_rank_0(f'  successfully loaded checkpoint from {load_dir} '
                 f'[ t {mpu.get_tensor_model_parallel_rank()}, '
                 f'p {mpu.get_pipeline_model_parallel_rank()} ] '
                 f'at iteration {iteration}')

    return iteration, num_floating_point_operations_so_far


def load_biencoder_checkpoint(model, only_query_model=False,
                              only_context_model=False, custom_load_path=None):
    """
    selectively load retrieval models for indexing/retrieving
    from saved checkpoints
    """

    args = get_args()

    model = unwrap_model(model)

    load_path = custom_load_path if custom_load_path is not None else args.load

    tracker_filename = get_checkpoint_tracker_filename(load_path)
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    checkpoint_name = get_checkpoint_name(load_path, iteration,
                                          args.use_distributed_optimizer,
                                          release=False)

    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
    ret_state_dict = state_dict['model']

    if only_query_model:
        ret_state_dict.pop('context_model')
    if only_context_model:
        ret_state_dict.pop('query_model')

    assert len(model) == 1
    model[0].load_state_dict(ret_state_dict)
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

    return model