arguments.py 95.4 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.

"""Megatron arguments."""

import argparse
import dataclasses
import json
import logging
import os
import torch
import types

import torch.nn.functional as F
from megatron.core.models.retro.utils import (
    get_config_path as get_retro_config_path,
    get_gpt_data_dir as get_retro_data_dir,
)
from megatron.core.transformer import TransformerConfig
from megatron.training.activations import squared_relu


def parse_args(extra_args_provider=None, ignore_unknown_args=False):
    """Parse all arguments."""
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)

    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
    parser = _add_biencoder_args(parser)
    parser = _add_vision_args(parser)
    parser = _add_moe_args(parser)
    parser = _add_logging_args(parser)
    parser = _add_straggler_detector_args(parser)
    parser = _add_inference_args(parser)
    parser = _add_transformer_engine_args(parser)
    parser = _add_retro_args(parser)
    parser = _add_experimental_args(parser)

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)

    # Parse.
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()

    # Experimental yaml
    if args.yaml_cfg is not None:
        from .yaml_arguments import load_yaml
        assert args.yaml_cfg and not args.use_legacy_models, \
            "Yaml config is not supported with legacy models."
        args = load_yaml(args.yaml_cfg)


    # Args from environment
    #args.rank = int(os.getenv('RANK', '0'))
    #args.world_size = int(os.getenv("WORLD_SIZE", '1'))

    return args


def load_retro_config(retro_project_dir):
    '''Load Retro's config.json.'''

    # Retro config path.
    retro_config_path = get_retro_config_path(retro_project_dir)
    assert os.path.exists(retro_config_path), \
        "Retro project dir missing config.json."

    # Load retro config.
    with open(retro_config_path) as f:
        retro_config = types.SimpleNamespace(**json.load(f))

    return retro_config


def load_retro_args(args):
    """Load predefined args from Retro config (if applicable).

    When using Retro (or GPT for comparison purposes), data arguments are
    overridden by the saved config.json within the Retro project directory. This
    is to ensure that the data used for pretraining is consistent with the data
    that was preprocessed using the Retro preprocessing pipeline (see
    `tools/retro/preprocess_data.py`).
    """

    # Return if no project directory is specified.
    if args.retro_project_dir is None:
        return

    # Load retro config.
    retro_config = load_retro_config(args.retro_project_dir)

    # Retro data path is relative to project dir (via hard or soft links).
    data_dir = get_retro_data_dir(args.retro_project_dir)
    data_path = list(retro_config.retro_gpt_data_path)
    if len(data_path) % 2 == 0:
        for i in range(len(data_path) - 1, -1, -2):
            data_path[i] = os.path.join(data_dir, data_path[i])
    else:
        assert len(data_path) == 1
        data_path[0] = os.path.join(data_dir, data_path[0])

    # Update args.
    args.data_cache_path = retro_config.retro_gpt_data_cache_path
    args.data_path = data_path if args.data_path is None else args.data_path
    args.eval_interval = retro_config.retro_gpt_eval_interval
    args.eval_iters = retro_config.retro_gpt_eval_iters
    args.global_batch_size = retro_config.retro_gpt_global_batch_size
    args.max_position_embeddings = retro_config.retro_gpt_seq_length
    args.merge_file = os.path.join(
        args.retro_project_dir,
        retro_config.retro_gpt_merge_file,
    ) if retro_config.retro_gpt_merge_file is not None else None
    args.seed = retro_config.retro_gpt_seed
    args.seq_length = retro_config.retro_gpt_seq_length
    args.tokenizer_model = os.path.join(
        args.retro_project_dir,
        retro_config.retro_gpt_tokenizer_model,
    ) if retro_config.retro_gpt_tokenizer_model is not None else None
    args.tokenizer_type = retro_config.retro_gpt_tokenizer_type
    args.train_samples = retro_config.retro_gpt_train_samples
    args.vocab_file = os.path.join(
        args.retro_project_dir,
        retro_config.retro_gpt_vocab_file,
    ) if retro_config.retro_gpt_vocab_file is not None else None

    # Retro-specific args.
    args.retro_block_size = retro_config.retro_block_size
    args.retro_chunk_length = retro_config.retro_gpt_chunk_length
    args.retro_neighbor_dirs = retro_config.retro_neighbor_dirs
    args.retro_split_preprocessing = retro_config.retro_gpt_split
    args.retro_bert_tokenizer_type = retro_config.retro_bert_tokenizer_type
    args.retro_bert_vocab_file = retro_config.retro_bert_vocab_file


def validate_args(args, defaults={}):

    # Load saved args from Retro (if applicable).
    load_retro_args(args)

    # Tensor model parallel size.
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)

    # Pipeline model parallel size.
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
    args.transformer_pipeline_model_parallel_size = (
        args.pipeline_model_parallel_size - 1
        if args.standalone_embedding_stage else
        args.pipeline_model_parallel_size
    )

    # Checks.
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % (model_parallel_size * args.context_parallel_size) == 0, \
        'world size ({}) is not divisible by tensor parallel size ({}) times ' \
        'pipeline parallel size ({}) times context parallel size ({})'.format(
        args.world_size, args.tensor_model_parallel_size,
        args.pipeline_model_parallel_size, args.context_parallel_size)
    args.data_parallel_size = args.world_size // (model_parallel_size * args.context_parallel_size)
    if args.rank == 0:
        print('using world size: {}, data-parallel size: {}, '
              'context-parallel size: {} '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.context_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)
    if args.pipeline_model_parallel_size > 1:
        if args.pipeline_model_parallel_split_rank is not None:
            assert args.pipeline_model_parallel_split_rank < \
                    args.pipeline_model_parallel_size, 'split rank needs'\
                    ' to be less than pipeline model parallel size ({})'.format(
                            args.pipeline_model_parallel_size)

    if args.tp_comm_overlap:
        assert args.sequence_parallel == True, 'Tensor parallel communication/GEMM overlap can happen only when sequence parallelism is enabled'

    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size

    if args.checkpoint_activations:
        if args.rank == 0:
            print('--checkpoint-activations is no longer valid, use --recompute-activations, '
                  'or, for more control, --recompute-granularity and --recompute-method.')
        exit()
    del args.checkpoint_activations

    if args.recompute_activations:
        args.recompute_granularity = 'selective'
    del args.recompute_activations

    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
        if getattr(args, key, None) is not None:
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

    if args.data_path is not None and args.split is None:
        legacy_default_split_value = '969, 30, 1'
        if args.rank == 0:
            print('WARNING: Please specify --split when using --data-path. Using legacy default value '
                  f'of "{legacy_default_split_value}"')
        args.split = legacy_default_split_value

    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
    if args.num_layers_per_virtual_pipeline_stage is not None:
        if args.overlap_p2p_comm:
            assert args.pipeline_model_parallel_size > 1, \
                'when interleaved schedule is used, pipeline-model-parallel size '\
                'should be greater than 1'
        else:
            assert args.pipeline_model_parallel_size > 2, \
                'when interleaved schedule is used and p2p communication overlap is disabled, '\
                'pipeline-model-parallel size should be greater than 2 to avoid having multiple '\
                'p2p sends and recvs between same 2 ranks per communication batch'
        assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
            'number of layers should be divisible by the pipeline parallel size'
        num_layers_per_pipeline_stage = args.num_layers // args.transformer_pipeline_model_parallel_size
        assert num_layers_per_pipeline_stage % args.num_layers_per_virtual_pipeline_stage == 0, \
            'number of layers per pipeline stage must be divisible number of layers per virtual pipeline stage'
        args.virtual_pipeline_model_parallel_size = num_layers_per_pipeline_stage // \
            args.num_layers_per_virtual_pipeline_stage
    else:
        args.virtual_pipeline_model_parallel_size = None
        # Overlap P2P communication is disabled if not using the interleaved schedule.
        args.overlap_p2p_comm = False
        if args.rank == 0:
            print('WARNING: Setting args.overlap_p2p_comm to False since non-interleaved '
                  'schedule does not support overlapping p2p communication')

    if args.overlap_param_gather:
        assert args.use_distributed_optimizer, \
            '--overlap-param-gather only supported with distributed optimizer'
        assert args.overlap_grad_reduce, \
            '--overlap-grad-reduce should be turned on when using --overlap-param-gather'
        assert not args.use_legacy_models, \
            '--overlap-param-gather only supported with MCore models'

    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
        assert not args.bf16
        args.params_dtype = torch.half
        # Turn off checking for NaNs in loss and grads if using dynamic loss scaling,
        # where NaNs in grads / loss are signal to the loss scaler.
        if not args.loss_scale:
            args.check_for_nan_in_loss_and_grad = False
            if args.rank == 0:
                print('WARNING: Setting args.check_for_nan_in_loss_and_grad to False since '
                      'dynamic loss scaling is being used')
    if args.bf16:
        assert not args.fp16
        args.params_dtype = torch.bfloat16
        # bfloat16 requires gradient accumulation and all-reduce to
        # be done in fp32.
        if not args.accumulate_allreduce_grads_in_fp32:
            args.accumulate_allreduce_grads_in_fp32 = True
            if args.rank == 0:
                print('accumulate and all-reduce gradients in fp32 for '
                      'bfloat16 data type.', flush=True)

    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

    if args.dataloader_type is None:
        args.dataloader_type = 'single'

    # data
    assert args.num_dataset_builder_threads > 0

    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0

    # Support for variable sequence lengths across batches/microbatches.
    # set it if the dataloader supports generation of variable sequence lengths
    # across batches/microbatches. Due to additional communication overhead
    # during pipeline parallelism, it should not be set if sequence length
    # is constant during training.
    args.variable_seq_lengths = False

    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
            'expected iteration-based learning rate warmup'
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
        if args.lr_warmup_fraction is not None:
            assert args.lr_warmup_iters == 0, \
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
        if args.lr_warmup_fraction is not None:
            assert args.lr_warmup_samples == 0, \
                'can only specify one of lr-warmup-fraction ' \
                'and lr-warmup-samples'

    if args.num_layers is not None:
        assert args.encoder_num_layers is None, \
            'cannot have both num-layers and encoder-num-layers specified'
        args.encoder_num_layers = args.num_layers
    else:
        assert args.encoder_num_layers is not None, \
            'either num-layers or encoder-num-layers should be specified'
        args.num_layers = args.encoder_num_layers

    # Check required arguments.
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
    for req_arg in required_args:
        _check_arg_is_not_none(args, req_arg)

    # Checks.
    if args.ffn_hidden_size is None:
        if args.swiglu:
            # reduce the dimnesion for MLP since projections happens on
            # two linear layers. this keeps the number of paramters in
            # the same ballpark as the counterpart with 4*h size
            # we keep it a multiple of 64, which means the actual tensor size
            # will be a multiple of 64 / tp_size
            args.ffn_hidden_size = int((4 * args.hidden_size * 2 / 3) / 64) * 64
        else:
            args.ffn_hidden_size = 4 * args.hidden_size

    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length

    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
    if args.decoder_seq_length is not None:
        assert args.max_position_embeddings >= args.decoder_seq_length
    if args.lr is not None:
        assert args.min_lr <= args.lr
    if args.save is not None:
        assert args.save_interval is not None
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
    if args.fp32_residual_connection:
        assert args.fp16 or args.bf16, \
            'residual connection in fp32 only supported when using fp16 or bf16.'

    if args.moe_grouped_gemm:
        assert args.bf16, 'Currently GroupedGEMM for MoE only supports bf16 dtype.'
        dc = torch.cuda.get_device_capability()
        assert dc[0] >= 8, "Unsupported compute capability for GroupedGEMM kernels."

    if args.weight_decay_incr_style == 'constant':
        assert args.start_weight_decay is None
        assert args.end_weight_decay is None
        args.start_weight_decay = args.weight_decay
        args.end_weight_decay = args.weight_decay
    else:
        assert args.start_weight_decay is not None
        assert args.end_weight_decay is not None

    TORCH_MAJOR = int(torch.__version__.split('.')[0])
    TORCH_MINOR = int(torch.__version__.split('.')[1])
    # Persistent fused layer norm.
    if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 11):
        args.no_persist_layer_norm = True
        if args.rank == 0:
            print('Persistent fused layer norm kernel is supported from '
                  'pytorch v1.11 (nvidia pytorch container paired with v1.11). '
                  'Defaulting to no_persist_layer_norm=True')

    # Activation recomputing.
    if args.distribute_saved_activations:
        assert args.tensor_model_parallel_size > 1, 'can distribute ' \
            'recomputed activations only across tensor model ' \
            'parallel groups'
        assert args.recompute_granularity == 'full', \
            'distributed recompute activations is only '\
            'application to full recompute granularity'
        assert args.recompute_method is not None, \
            'for distributed recompute activations to work you '\
            'need to use a recompute method '
        assert (TORCH_MAJOR, TORCH_MINOR) >= (1, 10), \
            'distributed recompute activations are supported for pytorch ' \
            'v1.10 and above (Nvidia Pytorch container >= 21.07). Current ' \
            'pytorch version is v%s.%s.' % (TORCH_MAJOR, TORCH_MINOR)

    if args.recompute_granularity == 'selective':
        assert args.recompute_method is None, \
            'recompute method is not yet supported for ' \
            'selective recomputing granularity'

    # disable sequence parallelism when tp=1
    # to avoid change in numerics when
    # sequence_parallelism is enabled.
    if args.tensor_model_parallel_size == 1:
        args.sequence_parallel = False

    # disable async_tensor_model_parallel_allreduce when
    # model parallel memory optimization is enabled
    if args.sequence_parallel:
        args.async_tensor_model_parallel_allreduce = False

    if os.environ.get('CUDA_DEVICE_MAX_CONNECTIONS') != "1":
        if args.sequence_parallel:
            raise RuntimeError(
                "Using sequence parallelism requires setting the environment variable "
                "CUDA_DEVICE_MAX_CONNECTIONS to 1")
        if args.async_tensor_model_parallel_allreduce:
            raise RuntimeError(
                "Using async gradient all reduce requires setting the environment "
                "variable CUDA_DEVICE_MAX_CONNECTIONS to 1")

    # Disable bias gelu fusion if we are disabling bias altogether
    if not args.add_bias_linear:
        args.bias_gelu_fusion = False

    # Retro checks.
    if args.retro_add_retriever:

        # Train samples should be auto-loaded.
        assert args.train_samples is not None, \
            "args.train_samples should be auto-loaded from the retro config."

        # Sequence parallelism unsupported.
        assert not args.sequence_parallel, \
            "retro currently does not support sequence parallelism."

        # Pipeline parallelism unsupported.
        assert args.pipeline_model_parallel_size == 1, \
            "retro currently does not support pipeline parallelism."

    if args.decoupled_lr is not None or args.decoupled_min_lr is not None:
        assert not args.use_legacy_models, \
            '--decoupled-lr and --decoupled-min-lr is not supported in legacy models.'
        assert not args.use_dist_ckpt, "Distributed checkpointing does not work with decoupled LR yet."
    # FlashAttention
    args.use_flash_attn = args.use_flash_attn_v1 or args.use_flash_attn_triton or args.use_flash_attn_v2

    # Legacy RoPE arguments
    if args.use_rotary_position_embeddings:
        args.position_embedding_type = 'rope'
    if args.rotary_interleaved and args.apply_rope_fusion:
        raise RuntimeError('--rotary-interleaved does not work with rope_fusion.')
    if args.rotary_interleaved and args.use_legacy_models:
        raise RuntimeError('--rotary-interleaved is not supported in legacy models.')

    # Would just need to add 'NoPE' as a position_embedding_type to support this, but for now
    # don't allow it to keep things simple
    if not args.add_position_embedding and args.position_embedding_type != 'rope':
        raise RuntimeError('--no-position-embedding is deprecated, use --position-embedding-type')

    # MoE Spec check
    if args.num_experts is not None:
        assert args.spec is None, "Model Spec must be None when using MoEs"

    # Context parallel
    if args.context_parallel_size > 1:
        assert not args.use_legacy_models, "Context parallelism is not supported in legacy models."

    # Expert parallelism check
    if args.expert_model_parallel_size  > 1:
        assert args.num_experts is not None, "num_experts must be non None to use expert model parallelism"
        assert args.num_experts % args.expert_model_parallel_size == 0, \
            "Number of experts should be a multiple of expert model parallel_size."
        assert not args.fp16, \
            "Expert parallelism is not supported with fp16 training."

    # Distributed checkpointing checks
    if args.use_dist_ckpt and args.use_legacy_models:
        raise RuntimeError('--use-dist-ckpt is not supported in legacy models.')

    # Data blend checks
    assert args.mock_data + \
           bool(args.data_path) + \
           any([args.train_data_path, args.valid_data_path, args.test_data_path]) \
           <= 1, "A single data source must be provided in training mode, else None"

    if args.use_tp_pp_dp_mapping:
        assert args.context_parallel_size * args.expert_model_parallel_size <= 1, \
            "context_parallel and expert_model_parallel can't be used with tp-pp-dp mapping."

    # Deterministic mode
    if args.deterministic_mode:
        assert not args.use_flash_attn, 'Flash attention can not be used in deterministic mode.'

        all_reduce_choices = ["Tree", "Ring", "CollnetDirect", "CollnetChain", "^NVLS"]
        assert os.getenv("NCCL_ALGO", -1) != -1 and os.getenv("NCCL_ALGO") in all_reduce_choices, \
            f"NCCL_ALGO must be one of {all_reduce_choices}."

    # Update the printed args to reflect that `apply_query_key_layer_scaling` also controls `attention_softmax_in_fp32`
    if args.apply_query_key_layer_scaling:
        args.attention_softmax_in_fp32 = True

    # Print arguments.
    _print_args("arguments", args)

    return args


def _print_args(title, args):
    """Print arguments."""
    if args.rank == 0:
        print(f'------------------------ {title} ------------------------',
              flush=True)
        str_list = []
        for arg in vars(args):
            dots = '.' * (48 - len(arg))
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
        print(f'-------------------- end of {title} ---------------------',
              flush=True)


def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


def core_transformer_config_from_args(args, config_class=None):

    # Config class.
    config_class = config_class or TransformerConfig

    # Translate args to core transformer configuration
    kw_args = {}
    for f in dataclasses.fields(config_class):
        if hasattr(args, f.name):
            kw_args[f.name] = getattr(args, f.name)
    kw_args['persist_layer_norm'] = not args.no_persist_layer_norm
    kw_args['layernorm_zero_centered_gamma'] = args.apply_layernorm_1p
    kw_args['layernorm_epsilon'] = args.norm_epsilon
    kw_args['deallocate_pipeline_outputs'] = True
    kw_args['pipeline_dtype'] = args.params_dtype
    kw_args['batch_p2p_comm'] = not args.overlap_p2p_comm
    kw_args['num_moe_experts'] = args.num_experts
    kw_args['rotary_interleaved'] = args.rotary_interleaved
    if args.swiglu:
        kw_args['activation_func'] = F.silu
        kw_args['gated_linear_unit'] = True
        kw_args['bias_activation_fusion'] = args.bias_swiglu_fusion
    else:
        kw_args['bias_activation_fusion'] = args.bias_gelu_fusion
    if args.squared_relu:
        assert not args.swiglu
        kw_args['activation_func'] = squared_relu
    if args.init_method_xavier_uniform:
        kw_args['init_method'] = torch.nn.init.xavier_uniform_
        kw_args['scaled_init_method'] = torch.nn.init.xavier_uniform_
    if args.group_query_attention:
        kw_args['num_query_groups'] = args.num_query_groups
    else:
        kw_args['num_query_groups'] = None

    # Return config.
    return config_class(**kw_args)


def _add_transformer_engine_args(parser):
    group = parser.add_argument_group(title='Transformer-Engine')

    group.add_argument('--fp8-format', default=None,
                       choices=['e4m3', 'hybrid'],
                       help='Which fp8 format scheme to use for FP8 tensors in the forward and backward pass',
                       dest='fp8')
    group.add_argument('--fp8-margin', type=int, default=0,
                       help='Scaling margin for fp8',
                       dest='fp8_margin')
    group.add_argument('--fp8-interval', type=int, default=1,
                       help='Scaling update interval for fp8',
                       dest='fp8_interval')
    group.add_argument('--fp8-amax-history-len', type=int, default=1,
                       help='Number of steps for which amax history is recorded per tensor',
                       dest='fp8_amax_history_len')
    group.add_argument('--fp8-amax-compute-algo', default='most_recent',
                       choices=['most_recent', 'max'],
                       help='Algorithm for computing amax from history',
                       dest='fp8_amax_compute_algo')
    group.add_argument('--no-fp8-wgrad', action='store_false',
                       help='Execute wgrad in higher precision even for FP8 runs',
                       dest='fp8_wgrad')
    group.add_argument('--transformer-impl', default='transformer_engine',
                       choices=['local', 'transformer_engine'],
                       help='Which Transformer implementation to use.')

    return parser

def _add_inference_args(parser):
    group = parser.add_argument_group(title='inference')

    group.add_argument('--inference-batch-times-seqlen-threshold',
                       type=int, default=512,
                       help='During inference, if batch-size times '
                       'sequence-length is smaller than this threshold '
                       'then we will not use pipelining, otherwise we will.')
    group.add_argument('--max-tokens-to-oom',
                       type=int, default=12000,
                       help='Maximum number of tokens during inference'
                       'tokens here is # in prompt + # to generate'
                       'Allows us to throw an error before OOM crashes server')
    group.add_argument('--output-bert-embeddings', action='store_true',
                       help='Output Bert embeddings (via mean pooling) from '
                       'model, rather than its binary head output or entire '
                       'hidden batch.')
    group.add_argument('--bert-embedder-type', default="megatron",
                       choices=["megatron", "huggingface"],
                       help='Select either Megatron or Huggingface as the '
                       'Bert embedder.')

    return parser


def _add_retro_args(parser):
    group = parser.add_argument_group(title='retro')

    group.add_argument('--retro-project-dir', default=None,
                       help='Retro project directory, which contains the '
                       'preprocessed data for pretraining. This directory '
                       'is built during preprocessing (see '
                       'tools/retro/README.md), and contains subdirectories '
                       'for the chunk database and pretraining neighbors.')
    group.add_argument('--retro-add-retriever',
                       action='store_true', default=False,
                       help='Add a retriever to the transformer, for use in '
                       'pretraining a Retro model.')
    group.add_argument('--retro-cyclic-train-iters', type=int, default=None,
                       help='Set number of training iterations for cyclic '
                       'Retro training.')
    group.add_argument('--retro-encoder-layers', type=int, default=2,
                       help='Number of layers to use for the retrieval '
                       'encoder.')
    group.add_argument('--retro-encoder-hidden-dropout',
                       type=float, default=0.1, help='Hidden dropout for '
                       'retrieval encoder.')
    group.add_argument('--retro-encoder-attention-dropout',
                       type=float, default=0.1, help='Attention dropout for '
                       'retrieval encoder.')
    group.add_argument("--retro-num-neighbors", type=int, default=2,
                       help='Number of neighbors to retrieve during '
                       'pretraining.')
    group.add_argument("--retro-num-retrieved-chunks", type=int, default=2,
                       help='Number of chunks to retrieve from the retrieval '
                       'database.')
    group.add_argument("--retro-attention-gate", type=float, default=1,
                       help="Gated cross attention.")
    group.add_argument("--retro-no-verify-neighbor-count", action="store_false",
                       dest="retro_verify_neighbor_count",
                       help="Skip verifying that len(GPT dataset) == len(saved "
                       "neighbors).")

    # Enforce argument naming convention.
    for action in group._group_actions:
        prefix = action.dest.split("_")[0]
        assert prefix == "retro", \
            "Retro args must be prefixed with '--retro-*', for consistent " \
            "styling. Please fix '%s'." % ", ".join(action.option_strings)

    return parser


def _add_network_size_args(parser):
    group = parser.add_argument_group(title='network size')

    group.add_argument('--num-layers', type=int, default=None,
                       help='Number of transformer layers.')
    group.add_argument('--encoder-num-layers', type=int, default=None,
                       help='Number of encoder transformer layers.')
    group.add_argument('--decoder-num-layers', type=int, default=None,
                       help='Number of decoder transformer layers.')
    group.add_argument('--hidden-size', type=int, default=None,
                       help='Tansformer hidden size.')
    group.add_argument('--ffn-hidden-size', type=int, default=None,
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden-size if not provided')
    group.add_argument('--num-attention-heads', type=int, default=None,
                       help='Number of transformer attention heads.')
    group.add_argument('--kv-channels', type=int, default=None,
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
    group.add_argument('--group-query-attention', action='store_true',
                          help='Use group-query attention.')
    group.add_argument('--num-query-groups', type=int, default=1)

    group.add_argument('--max-position-embeddings', type=int, default=None,
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--position-embedding-type', type=str, default='learned_absolute',
                       choices=['learned_absolute', 'rope', 'none'],
                       help='Position embedding type.')
    group.add_argument('--use-rotary-position-embeddings', action='store_true',
                       help='Use rotary positional embeddings or not. '
                       'Deprecated: use --position-embedding-type')
    group.add_argument('--rotary-percent', type=float, default=1.0,
                       help='Percent of rotary dimension to use, default 100%%')
    group.add_argument('--rotary-interleaved', action='store_true',
                          help='Use interleaved rotary embedding.')
    group.add_argument('--rotary-seq-len-interpolation-factor', type=int, default=None,
                       help='Sequence length interpolation factor for rotary embeddings.')
    group.add_argument('--no-position-embedding',
                       action='store_false',
                       help='Disable position embedding. Deprecated: use --position-embedding-type',
                       dest='add_position_embedding')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
    group.add_argument('--normalization', default='LayerNorm',
                       choices=['LayerNorm', 'RMSNorm'],
                       help='Which normalization technique to use.')
    group.add_argument('--norm-epsilon', type=float, default=1e-5,
                       help='Epsilon for layer norm and RMS norm.')
    group.add_argument('--apply-layernorm-1p', action='store_true',
                       help='Adjust LayerNorm weights such that they are centered '
                       'around zero. This improves numerical stability.')
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
    group.add_argument('--squared-relu', action='store_true',
                       help='Use squared relu activation instead of default gelu')
    group.add_argument('--swiglu', action='store_true',
                       help='Use gated linear units and SiLU activation instead of default gelu')
    group.add_argument('--onnx-safe', type=bool, required=False,
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
    group.add_argument('--bert-no-binary-head', action='store_false',
                       help='Disable BERT binary head.',
                       dest='bert_binary_head')
    group.add_argument('--untie-embeddings-and-output-weights', action='store_true',
                       help='Untie embeddings and output weights.'),
    return parser

def _add_straggler_detector_args(parser):
    group = parser.add_argument_group(title='straggler')
    group.add_argument('--log-straggler', action='store_true',
                       help='If set, tracks and logs straggler per GPU.')
    group.add_argument('--disable-straggler-on-startup', action='store_true',
                       help='If set, StragglerDetector is disabled on startup.')
    group.add_argument('--straggler-ctrlr-port', type=int, default=65535,
                       help='Port number to toggle StragglerDetector on/off at runtime')
    group.add_argument('--straggler-minmax-count', type=int, default=1,
                       help='Number of ranks to report with high/low estimated throughput')
    return parser

def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')

    group.add_argument('--log-params-norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
    group.add_argument('--log-num-zeros-in-grad', action='store_true',
                       help='If set, calculate and log the number of zeros in gradient.')
    group.add_argument('--log-throughput', action='store_true',
                       help='If set, calculate and log throughput per GPU.')
    group.add_argument('--log-progress', action='store_true',
                       help='If set, log progress (in terms of number of processed tokens and '
                       'number of floating-point operations) to progress.txt file in checkpoint '
                       'directory.')
    group.add_argument('--timing-log-level', type=int,
                       default=0, choices=range(0,3),
                       help='Granularity level to measure and report timing. '
                       '   0: report only iteration time and make sure timing '
                       '      does not introduce extra overhead.'
                       '   1: report timing for operations that are executed '
                       '      very limited times (basically once) during '
                       '      each iteration (such as gradient all-reduce) '
                       '   2: report timing for operations that migh be '
                       '      executed numerous times during each iteration. '
                       'Note that setting the level to 1 or 2 might '
                       'cause increase in iteration time.')
    group.add_argument('--no-barrier-with-level-1-timing', action='store_false',
                       help='If not set, use barrier with level 1 time '
                       'measurements. Note that this is up to the user '
                       'to make sure calling barrier with their timers '
                       'will not result in hangs. This can happen if for '
                       'example the user adds a level 1 timer that is not '
                       'called by all ranks.',
                       dest='barrier_with_L1_time')
    group.add_argument('--timing-log-option', type=str, default='minmax',
                       choices=['max', 'minmax', 'all'],
                       help='Options for logging timing:'
                       '  max: report the max timing across all ranks'
                       '  minmax: report min and max timings across all ranks'
                       '  all: report timings of all ranks.')
    group.add_argument('--tensorboard-log-interval', type=int, default=1,
                       help='Report to tensorboard interval.')
    group.add_argument('--tensorboard-queue-size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
    group.add_argument('--log-timers-to-tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--log-batch-size-to-tensorboard', action='store_true',
                       help='If set, write batch-size to tensorboard.')
    group.add_argument('--no-log-learnig-rate-to-tensorboard',
                       action='store_false',
                       help='Disable learning rate logging to tensorboard.',
                       dest='log_learning_rate_to_tensorboard')
    group.add_argument('--no-log-loss-scale-to-tensorboard',
                       action='store_false',
                       help='Disable loss-scale logging to tensorboard.',
                       dest='log_loss_scale_to_tensorboard')
    group.add_argument('--log-validation-ppl-to-tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
    group.add_argument('--log-memory-to-tensorboard',
                       action='store_true',
                       help='Enable memory logging to tensorboard.')
    group.add_argument('--log-world-size-to-tensorboard',
                       action='store_true',
                       help='Enable world size logging to tensorboard.')
    group.add_argument('--wandb-project', type=str, default='',
                       help='The wandb project name. Ignore wandb by default.')
    group.add_argument('--wandb-exp-name', type=str, default='',
                       help='The wandb experiment name.')
    group.add_argument('--wandb-save-dir', type=str, default='',
                       help='Path to save the wandb results locally.')
    group.add_argument('--enable-one-logger', action='store_true',
                       help='If set, use one_logger to track E2E metrics'
                       'Note that one_logger is an internal tool and not available externally. '
                       'For installation, please try command: `pip install '
                       '--index-url=https://sc-hw-artf.nvidia.com/api/pypi/hwinf-ml-pypi/simple'
                       ' one_logger` or go to https://gitlab-master.nvidia.com/hwinf-dcm/onelogger '
                       'for more details')
    group.add_argument('--one-logger-project', type=str, default='e2e-tracking',
                       help='The one-logger project name. Will ignore if '
                       '--enable-one-logger is not set')
    group.add_argument('--one-logger-entity', type=str, default='hwinf_dcm',
                       help='The one-logger username or team name. Will ignore if '
                       '--enable-one-logger is not set')
    group.add_argument('--one-logger-run-name', type=str, default=None,
                       help='The one-logger run name displayed. Will ignore if '
                       '--enable-one-logger is not set')
    group.add_argument('--logging-level', type=int, default=None,
                       help='Set default logging level')
    return parser


def _add_regularization_args(parser):
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
                       help='Post attention dropout probability.')
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
    group.add_argument('--start-weight-decay', type=float,
                       help='Initial weight decay coefficient for L2 regularization.')
    group.add_argument('--end-weight-decay', type=float,
                       help='End of run weight decay coefficient for L2 regularization.')
    group.add_argument('--weight-decay-incr-style', type=str, default='constant',
                       choices=['constant', 'linear', 'cosine'],
                       help='Weight decay increment function.')
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
    group.add_argument('--adam-beta1', type=float, default=0.9,
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
    group.add_argument('--adam-beta2', type=float, default=0.999,
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
    group.add_argument('--adam-eps', type=float, default=1e-08,
                       help='Term added to the denominator to improve'
                       'numerical stability')
    group.add_argument('--sgd-momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')
    return parser


def _add_training_args(parser):
    group = parser.add_argument_group(title='training')

    group.add_argument('--micro-batch-size', type=int, default=None,
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
                       'parallel size times number of micro batches.')
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
    group.add_argument('--global-batch-size', type=int, default=None,
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
                       'use micro-batch-size * data-parallel-size as the '
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
    group.add_argument('--recompute-activations', action='store_true',
                       help='recompute activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
    group.add_argument('--recompute-granularity', type=str, default=None,
                       choices=['full', 'selective'],
                       help='Checkpoint activations to allow for training '
                       'with larger models, sequences, and batch sizes. '
                       'It is supported at two granularities 1) full: '
                       'whole transformer layer is recomputed, '
                       '2) selective: core attention part of the transformer '
                       'layer is recomputed.')
    group.add_argument('--no-check-for-nan-in-loss-and-grad', action='store_false',
                       help='Check for NaNs in loss and grad',
                       dest='check_for_nan_in_loss_and_grad')
    group.add_argument('--distribute-saved-activations',
                       action='store_true',
                       help='If set, distribute recomputed activations '
                       'across model parallel group.')
    group.add_argument('--recompute-method', type=str, default=None,
                       choices=['uniform', 'block'],
                       help='1) uniform: uniformly divide the total number of '
                       'Transformer layers and recompute the input activation of '
                       'each divided chunk at specified granularity, '
                       '2) recompute the input activations of only a set number of '
                       'individual Transformer layers per pipeline stage and do the '
                       'rest without any recomputing at specified granularity'
                       'default) do not apply activations recompute to any layers')
    group.add_argument('--recompute-num-layers', type=int, default=None,
                       help='1) uniform: the number of Transformer layers in each '
                       'uniformly divided recompute unit, '
                       '2) block: the number of individual Transformer layers '
                       'to recompute within each pipeline stage.')
    group.add_argument('--no-clone-scatter-output-in-embedding', action='store_false',
                       help='If not set, clone the output of the scatter in embedding layer to GC original tensor.',
                       dest='clone_scatter_output_in_embedding')
    group.add_argument('--profile', action='store_true',
                       help='Enable nsys profiling. When using this option, nsys '
                       'options should be specified in commandline. An example '
                       'nsys commandline is `nsys profile -s none -t nvtx,cuda '
                       '-o <path/to/output_file> --force-overwrite true '
                       '--capture-range=cudaProfilerApi '
                       '--capture-range-end=stop`.')
    group.add_argument('--profile-step-start', type=int, default=10,
                       help='Global step to start profiling.')
    group.add_argument('--profile-step-end', type=int, default=12,
                       help='Global step to stop profiling.')
    group.add_argument('--profile-ranks', nargs='+', type=int, default=[0],
                       help='Global ranks to profile.')
    group.add_argument('--tp-comm-overlap', action='store_true', help='Enables the '
                       ' overlap of Tensor parallel communication and GEMM kernels.')
    group.add_argument('--tp-comm-overlap-cfg', type=str, default=None,
                       help='Config file when tp_comm_overlap is enabled.')
    group.add_argument('--disable-tp-comm-overlap-ag', action='store_false',
                       help=('Disables the All-Gather overlap with GEMM by '
                             'pipelining the GEMM and All-Gather.'),
                       dest='tp_comm_overlap_ag')
    group.add_argument('--disable-tp-comm-overlap-rs', action='store_false',
                       help=('Disables the Reduce-Scatter overlap with GEMM by '
                             'pipelining the GEMM and Reduce-Scatter.'),
                       dest='tp_comm_overlap_rs')
    group.add_argument('--tp-comm-overlap-rs-dgrad', action='store_true',
                       help = 'Enables the Reduce-Scatter overlap with dgrad GEMM.',
                       dest='tp_comm_overlap_rs_dgrad')
    group.add_argument('--disable-tp-comm-bulk-dgrad', action='store_false',
                       help='Disables the All-Gather overlap with bprop activation gradient GEMM.',
                       dest='tp_comm_bulk_dgrad')
    group.add_argument('--disable-tp-comm-bulk-wgrad', action='store_false',
                       help='Disables the Reduce-Scatter overlap with bprop weight gradient GEMM.',
                       dest='tp_comm_bulk_wgrad')
    group.add_argument('--use-cpu-initialization', action='store_true',
                       default=None,
                       help='If set, initialize weights on the CPU. This eliminates init differences based on tensor parallelism.')
    group.add_argument('--empty-unused-memory-level', default=0, type=int,
                       choices=[0, 1, 2],
                       help='Call torch.cuda.empty_cache() each iteration '
                       '(training and eval), to reduce fragmentation.'
                       '0=off, 1=moderate, 2=aggressive.')
    group.add_argument('--deterministic-mode', action='store_true',
                       help='Choose code that has deterministic execution. This usually '
                       'means slower execution, but is good for debugging and testing.')
    group.add_argument('--check-weight-hash-across-dp-replicas-interval', type=int, default=None,
                       help='Interval to check weight hashes are same across DP replicas. If not specified, weight hashes not checked.')
    group.add_argument('--calculate-per-token-loss', action='store_true',
                       help=('Scale cross entropy loss by the number of non-padded tokens in the '
                             'global batch, versus the default behavior of assuming all tokens are non-padded.'))

    # deprecated
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
    group.add_argument('--train-iters', type=int, default=None,
                       help='Total number of iterations to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
    group.add_argument('--exit-signal-handler', action='store_true',
                       help='Dynamically save the checkpoint and shutdown the '
                       'training if SIGTERM is received')
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
    group.add_argument('--no-masked-softmax-fusion',
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
                       dest='masked_softmax_fusion')
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no-bias-swiglu-fusion', action='store_false',
                       help='Disable bias and swiglu fusion, the fusion is '
                       'available only when using megatron-core.',
                       dest='bias_swiglu_fusion')
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
    group.add_argument('--no-rope-fusion', action='store_false',
                       help='Disable rope fusion, the fusion is available '
                       'only when using megatron-core.',
                       dest='apply_rope_fusion')
    group.add_argument('--cross-entropy-loss-fusion', action='store_true',
                       help='Enabled fusion of cross entropy loss calculation.',
                       dest='cross_entropy_loss_fusion')
#    group.add_argument('--use-flash-attn', action='store_true',
#                       help='use FlashAttention implementation of attention. '
#                       'https://arxiv.org/abs/2205.14135')
    group.add_argument('--use-flash-attn', '--use-flash-attn-v1', dest='use_flash_attn_v1', action='store_true',
                       help='use first version FlashAttention implementation of attention. '
                       'https://arxiv.org/abs/2205.14135')
    group.add_argument('--use-flash-attn-v2', action='store_true',
                       help='use second version FlashAttention implementation of attention. '
                       'https://arxiv.org/abs/2307.08691')
    group.add_argument('--use-flash-attn-triton', action='store_true',
                       help='use FlashAttention implementation of attention using Triton.')
    group.add_argument('--disable-bias-linear', action='store_false',
                       help='Disable bias in the linear layers',
                       dest='add_bias_linear')
    group.add_argument('--add-qkv-bias', action='store_true',
                       help='Enable bias only in the QKV linear layers',
                       dest='add_qkv_bias')
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd', 'bnb'],
                       help='Optimizer function')
    group.add_argument('--dataloader-type', type=str, default=None,
                       choices=['single', 'cyclic', 'external'],
                       help='Single pass vs multiple pass data loader')
    group.add_argument('--no-async-tensor-model-parallel-allreduce',
                       action='store_false',
                       help='DEPRECATED. This flag is ignored.',
                       dest='async_tensor_model_parallel_allreduce')
    group.add_argument('--no-persist-layer-norm', action='store_true',
                       help='Disable using persistent fused layer norm kernel. '
                       'This kernel supports only a set of hidden sizes. Please '
                       'check persist_ln_hidden_sizes if your hidden '
                       'size is supported.')
    group.add_argument('--sequence-parallel', action='store_true',
                       help='Enable sequence parallel optimization.')
    group.add_argument('--no-gradient-accumulation-fusion',
                       action='store_false',
                       help='Disable fusing gradient accumulation to weight '
                       'gradient computation of linear layers',
                       dest='gradient_accumulation_fusion')
    group.add_argument('--use-mcore-models', action='store_true',
                       dest='deprecated_use_mcore_models',
                       help='DEPRECATED. Use the implementation from megatron core.'
                       'Now ignored and mcore models are the default, use '
                       '--use-legacy-models to not use core models.')
    group.add_argument('--use-legacy-models', action='store_true',
                       help='Use the legacy Megatron models, not Megatron-Core models.')
    group.add_argument('--manual-gc', action='store_true',
                       help='Disable the threshold-based default garbage '
                       'collector and trigger the garbage collection manually. '
                       'Manual garbage collection helps to align the timing of '
                       'the collection across ranks which mitigates the impact '
                       'of CPU-associated jitters. When the manual gc is enabled, '
                       'garbage collection is performed only at the start and the '
                       'end of the validation routine by default.')
    group.add_argument('--manual-gc-interval', type=int, default=0,
                       help='Training step interval to trigger manual garbage '
                       'collection. When the value is set to 0, garbage '
                       'collection is not triggered between training steps.')
    group.add_argument('--no-manual-gc-eval', action='store_false',
                       help='When using manual garbage collection, disable '
                       'garbage collection at the start and the end of each '
                       'evaluation run.', dest='manual_gc_eval')
    group.add_argument('--disable-tp-comm-split-ag', action='store_false',
                       help='Disables the All-Gather overlap with fprop GEMM.',
                       dest='tp_comm_split_ag')
    group.add_argument('--disable-tp-comm-split-rs', action='store_false',
                       help='Disables the Reduce-Scatter overlap with fprop GEMM.',
                       dest='tp_comm_split_rs')

    return parser


def _add_initialization_args(parser):
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
    group.add_argument('--data-parallel-random-init', action='store_true',
                       help='Enable random initialization of params '
                       'across data parallel ranks')
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
    group.add_argument('--init-method-xavier-uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')

    return parser


def _add_learning_rate_args(parser):
    group = parser.add_argument_group(title='learning rate')

    group.add_argument('--lr', type=float, default=None,
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learning rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
                       choices=['constant', 'linear', 'cosine', 'inverse-square-root', 'WSD'],
                       help='Learning rate decay function.')
    group.add_argument('--lr-wsd-decay-style', type=str, default='exponential',
                       choices=['exponential', 'linear', 'cosine'],
                       help='Decay style for the annealing phase of WSD'),
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
    group.add_argument('--lr-wsd-decay-samples', type=int, default=None,
                       help='number of samples for the annealing phase in the wsd schedule')
    group.add_argument('--lr-wsd-decay-iters', type=int, default=None,
                       help='number of iterations for the annealing phase in the wsd schedule')
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-init', type=float, default=0.0,
                       help='Initial value for learning rate warmup. The '
                       'scheduler starts warmup from this value.')
    group.add_argument('--warmup', type=int, default=None,
                       help='Old lr warmup argument, do not use. Use one of the'
                       '--lr-warmup-* arguments above')
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minimum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--override-opt_param-scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use-checkpoint-opt_param-scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')
    group.add_argument('--decoupled-lr', type=float, default=None,
                       help='Separate learning rate for the input and output layer')
    group.add_argument('--decoupled-min-lr', type=float, default=None,
                       help='Minimum value for learning rate for the input and output layer. The scheduler'
                       'clip values below this threshold')

    return parser


def _add_checkpointing_args(parser):
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
    group.add_argument('--no-save-optim', action='store_true', default=None,
                       help='Do not save current optimizer.')
    group.add_argument('--no-save-rng', action='store_true', default=None,
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
    group.add_argument('--no-load-optim', action='store_true', default=None,
                       help='Do not load optimizer when loading checkpoint.')
    group.add_argument('--no-load-rng', action='store_true', default=None,
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')
    group.add_argument('--pretrained-checkpoint', type=str, default=None,
                       help='Directory containing a pretrained model checkpoint for finetuning.')
    group.add_argument('--ckpt-step', type=int, default=None,
                       help='Checkpoint step to load model from.')
    group.add_argument('--no-initialization', action='store_false',
                       help='Do not perform initialization when building model, '
                       'can reduce startup time when definitely loading from a '
                       'checkpoint',
                       dest='perform_initialization')
    group.add_argument('--use-checkpoint-args', action='store_true',
                       help='Override any command line arguments with arguments '
                       'from the checkpoint')
    group.add_argument('--exit-on-missing-checkpoint', action='store_true',
                       help="If '--load' is set, but checkpoint is not found "
                       "(e.g., path typo), then exit instead of random "
                       "initialization.")
    group.add_argument('--use-dist-ckpt', action='store_true',
                       help='Use distributed checkpoint format.')
    group.add_argument('--auto-detect-ckpt-format', action='store_true',
                       help='Determine if the checkpoint format is in legacy or distributed format.'
                            ' If False, expects distributed checkpoint iff args.use_dist_ckpt.'
                            ' Might slow down loading a bit (double rank0 ckpt load).')
    group.add_argument('--dist-ckpt-format', type=str, default='torch_dist',
                       choices=['zarr', 'torch_dist'],
                       help='Distributed checkpoint format to use.')
    group.add_argument('--ckpt-fully-parallel-save', action='store_true',
                       help='Apply full save parallelization across DP for'
                            ' distributed checkpoints. Depending on ckpt format'
                            ' might increase number of files in the checkpoint.')
    group.add_argument('--async-save', action='store_true', default=None,
                       help='Apply async checkpointing save. Currently works only with'
                            '`torch_dist` distributed checkpoint format.')
    group.add_argument('--ckpt-fully-parallel-load', action='store_true',
                       help='Apply full load parallelization across DP for'
                            ' distributed checkpoints.')
    group.add_argument('--ckpt-assume-constant-structure', action='store_true',
                       help='If the model and optimizer state dict structure is'
                            'constant throughout a *single training job*, it allows for'
                            'different checkpointing performance optimizations.')
    return parser


def _add_mixed_precision_args(parser):
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
    group.add_argument('--bf16', action='store_true',
                       help='Run model in bfloat16 mode.')
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scaling.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
    group.add_argument('--apply-query-key-layer-scaling', action='store_true',
                       help='Scale Q * K^T by 1 / layer-number. '
                       'Useful for fp16 training. Also sets `attention_softmax_in_fp32` to True.')
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
                       help='Run attention masking and softmax in fp32.')
    group.add_argument('--accumulate-allreduce-grads-in-fp32',
                       action='store_true',
                       help='Gradient accumulation and all-reduce in fp32.')
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

    return parser


def _add_distributed_args(parser):
    group = parser.add_argument_group(title='distributed')

    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
    group.add_argument('--pipeline-model-parallel-split-rank',
                       type=int, default=None,
                       help='Rank where encoder and decoder should be split.')
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
    group.add_argument('--num-layers-per-virtual-pipeline-stage', type=int, default=None,
                       help='Number of layers per virtual pipeline stage')
    group.add_argument('--no-overlap-p2p-communication', action='store_false',
                       help='overlap pipeline parallel communication with forward and backward chunks',
                       dest='overlap_p2p_comm')
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--distributed-timeout-minutes', type=int, default=10,
                       help='Timeout minutes for torch.distributed.')
    group.add_argument('--overlap-grad-reduce', action='store_true',
                       default=False, help='If set, overlap DDP grad reduce.')
    group.add_argument('--no-delay-grad-reduce', action='store_false',
                       help='If not set, delay / synchronize grad reductions in all but first PP stage.',
                       dest='delay_grad_reduce')
    group.add_argument('--ddp-bucket-size', type=int, default=None,
                       help='Bucket size for data-parallel communication')
    group.add_argument('--ddp-average-in-collective', action='store_true',
                       default=False, help='If set, average directly in data-parallel communication collective.')
    group.add_argument('--overlap-param-gather', action='store_true',
                       default=False, help='If set, overlap param all-gather in distributed optimizer.')
    group.add_argument('--delay-param-gather', action='store_true',
                       default=False, help='If set, delay / synchronize param all-gathers in all but first PP stage.')
    group.add_argument('--no-scatter-gather-tensors-in-pipeline', action='store_false',
                       help='If not set, use scatter/gather to optimize communication of tensors in pipeline.',
                       dest='scatter_gather_tensors_in_pipeline')
    group.add_argument('--use-ring-exchange-p2p', action='store_true',
                       default=False, help='If set, use custom-built ring exchange '
                       'for p2p communications. Note that this option will require '
                       'a custom built image that support ring-exchange p2p.')
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
                       help='If set to True, initialize_megatron() '
                       'skips DDP initialization and returns function to '
                       'complete it instead.Also turns on '
                       '--use-cpu-initialization flag. This is for '
                       'external DDP manager.' )
    group.add_argument('--standalone-embedding-stage', action='store_true',
                       default=False, help='If set, *input* embedding layer '
                       'is placed on its own pipeline stage, without any '
                       'transformer layers. (For T5, this flag currently only '
                       'affects the encoder embedding.)')
    group.add_argument('--use-distributed-optimizer', action='store_true',
                       help='Use distributed optimizer.')
    group.add_argument('--context-parallel-size', type=int, default=1,
                       help='Degree of context parallelism.')
    group.add_argument('--nccl-communicator-config-path', type=str, default=None,
                       help='Path to the yaml file with NCCL communicator '
                       'configurations. The number of min/max thread groups and thread '
                       'group cluster size of each communicator can be configured by '
                       'setting `min_ctas`, `max_ctas`, and `cga_cluster_size`.')
    group.add_argument('--use-tp-pp-dp-mapping', action='store_true', default=False,
                        help='If set, distributed ranks initialize order is changed '
                        'from tp-dp-pp to tp-pp-dp. Make sure EP and CP aren\'t used '
                        'with this option enabled')

    group.add_argument('--rank', default=-1, type=int,
                       help='node rank for distributed training')
    group.add_argument('--world_size', type=int, default=-1,
                       help='number of nodes for distributed training')
    group.add_argument('--dist_url',
                       help='Which master node url for distributed training.')

    return parser


def _add_validation_args(parser):
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')
    group.add_argument("--test-mode", action="store_true", help='Run all real-time test alongside the experiment.')
    group.add_argument('--skip-train', action='store_true',
                       default=False, help='If set, bypass the training loop, '
                       'optionally do evaluation for validation/test, and exit.')

    return parser


def _add_data_args(parser):
    group = parser.add_argument_group(title='data and dataloader')

    group.add_argument('--data-path', nargs='*', default=None,
                       help='The weight and prefix list for a set of train, validation, and test'
                       'datasets which split according to --split. The accepted formats are: '
                       '(1) a single prefix, '
                       '(2) a list of weight prefix pairs e.g. weight1 prefix1 weight2 prefix2, '
                       '(3) a list of prefixes e.g. prefix1 prefix2. '
                       'For (3), weights are inferred from the lengths of the contributing datasets. '
                       'This argument is exclusive to the other independent --*-data-path arguments.')
    group.add_argument('--split', type=str, default=None,
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
    group.add_argument('--train-data-path', nargs='*', default=None,
                       help='The weight and prefix list for an independent train dataset. '
                       'Follows the same pattern rules as --data-path.')
    group.add_argument('--valid-data-path', nargs='*', default=None,
                       help='The weight and prefix list for an independent validation dataset. '
                       'Follows the same pattern rules as --data-path.')
    group.add_argument('--test-data-path', nargs='*', default=None,
                       help='The weight and prefix list for an independent test dataset. '
                       'Follows the same pattern rules as --data-path.')
    group.add_argument('--data-cache-path', default=None,
                       help='Path to a directory to hold cached index files.')
    group.add_argument('--no-mmap-bin-files', action='store_false',
                       help='Disable mmap-ing of .bin files.',
                       dest='mmap_bin_files')
    group.add_argument('--mock-data', action='store_true',
                       help='Skip data loading and validation and opt for artificial '
                       'generation of mock data when an implementation is available.')
    group.add_argument('--vocab-size', type=int, default=None,
                       help='Size of vocab before EOD or padding.')
    group.add_argument('--vocab-file', type=str, default=None,
                       help='Path to the vocab file.')
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
    group.add_argument('--vocab-extra-ids', type=int, default=0,
                       help='Number of additional vocabulary tokens. '
                            'They are used for span masking in the T5 model')
    group.add_argument('--seq-length', type=int, default=None,
                       help='Maximum sequence length to process.')
    group.add_argument('--encoder-seq-length', type=int, default=None,
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq-length')
    group.add_argument('--decoder-seq-length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
    group.add_argument('--retriever-seq-length', type=int, default=256,
                       help='Maximum sequence length for the biencoder model '
                       'for retriever')
    group.add_argument('--sample-rate', type=float, default=1.0,
                       help='sample rate for training data. Supposed to be 0 '
                            ' < sample_rate < 1')
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
                                'BertWordPieceCase',
                                'GPT2BPETokenizer',
                                'SentencePieceTokenizer',
                                'GPTSentencePieceTokenizer',
                                'HuggingFaceTokenizer',
                                'Llama2Tokenizer',
                                'Llama3Tokenizer',
                                'MistralTokenizer',
                                'NullTokenizer','QwenTokenizer'],
                       help='What type of tokenizer to use.')
    group.add_argument('--tokenizer-model', type=str, default=None,
                       help='Sentencepiece tokenizer model.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
    group.add_argument('--no-create-attention-mask-in-dataloader', action='store_false',
                       help='If set, do not create attention_masks in dataloader.',
                       dest='create_attention_mask_in_dataloader')
    group.add_argument('--num-dataset-builder-threads', type=int, default=1,
                       help='Number of parallel threads per rank for dataset builder')
    return parser


def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')

    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')

    return parser


def _add_biencoder_args(parser):
    group = parser.add_argument_group(title='biencoder')

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
                       help='Size of block embeddings to be used in ICT and '
                        'REALM (paper default: 128)')
    group.add_argument('--biencoder-projection-dim', type=int, default=0,
                       help='Size of projection head used in biencoder (paper'
                        ' default: 128)')
    group.add_argument('--biencoder-shared-query-context-model', action='store_true',
                        help='Whether to share the parameters of the query '
                        'and context models or not')

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
                       help='Probability of keeping query in block for '
                       'ICT dataset')
    group.add_argument('--use-one-sent-docs', action='store_true',
                       help='Whether to use one sentence documents in ICT')
    group.add_argument('--evidence-data-path', type=str, default=None,
                       help='Path to Wikipedia Evidence frm DPR paper')

    # training
    group.add_argument('--retriever-report-topk-accuracies', nargs='+', type=int,
                        default=[], help="Which top-k accuracies to report "
                        "(e.g. '1 5 20')")
    group.add_argument('--retriever-score-scaling', action='store_true',
                       help='Whether to scale retriever scores by inverse '
                        'square root of hidden size')

    # faiss index
    group.add_argument('--block-data-path', type=str, default=None,
                       help='Where to save/load BlockData to/from')
    group.add_argument('--embedding-path', type=str, default=None,
                       help='Where to save/load Open-Retrieval Embedding'
                        ' data to/from')

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
                       help='How large of batches to use when doing indexing '
                       'jobs')
    group.add_argument('--indexer-log-interval', type=int, default=1000,
                       help='After how many batches should the indexer '
                       'report progress')
    return parser


def _add_vision_args(parser):
    group = parser.add_argument_group(title="vision")

    # general vision arguements
    group.add_argument('--num-classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
    group.add_argument('--img-h', type=int, default=224,
                       help='Image height for vision classification task')
    group.add_argument('--img-w', type=int, default=224,
                       help='Image height for vision classification task')
    group.add_argument('--num-channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch-dim', type=int, default=16,
                       help='patch dimension')
    group.add_argument('--classes-fraction', type=float, default=1.0,
                       help='training with fraction of classes.')
    group.add_argument('--data-per-class-fraction', type=float, default=1.0,
                       help='training with fraction of data per class.')
    group.add_argument('--no-data-sharding', action='store_false',
                       help='Disable data sharding.',
                       dest='data_sharding')
    group.add_argument('--head-lr-mult', type=float, default=1.0,
                       help='learning rate multiplier for head during finetuning')

    # pretraining type and backbone selection`
    group.add_argument('--vision-pretraining', action='store_true',
                       help='flag to indicate vision pretraining')
    group.add_argument('--vision-pretraining-type', type=str, default='classify',
                       choices=['classify', 'inpaint', 'dino'],
                       help='pretraining objectives')
    group.add_argument('--vision-backbone-type', type=str, default='vit',
                       choices=['vit', 'mit', 'swin'],
                       help='backbone types types')
    group.add_argument('--swin-backbone-type', type=str, default='tiny',
                       choices=['tiny', 'base', 'h3'],
                       help='pretraining objectives')
    # inpainting arguments
    group.add_argument('--mask-type', type=str, default='random',
                       choices=['random', 'row'],
                       help='mask types')
    group.add_argument('--mask-factor', type=float, default=1.0,
                       help='mask size scaling parameter')

    # dino arguments
    group.add_argument('--iter-per-epoch', type=int, default=1250,
                       help='iterations per epoch')
    group.add_argument('--dino-local-img-size', type=int, default=96,
                       help='Image size for vision classification task')
    group.add_argument('--dino-local-crops-number', type=int, default=10,
                       help='Number of local crops')
    group.add_argument('--dino-head-hidden-size', type=int, default=2048,
                       help='Hidden dimension size in dino head')
    group.add_argument('--dino-bottleneck-size', type=int, default=256,
                       help='Bottle neck dimension in dino head ')
    group.add_argument('--dino-freeze-last-layer', type=float, default=1,
                       help='Freezing last layer weights')
    group.add_argument('--dino-norm-last-layer', action='store_true',
                       help='Disable Norm in last layer.')
    group.add_argument('--dino-warmup-teacher-temp', type=float, default=0.04,
                       help='warump teacher temperature')
    group.add_argument('--dino-teacher-temp', type=float, default=0.07,
                       help='teacher temperature')
    group.add_argument('--dino-warmup-teacher-temp-epochs', type=int, default=30,
                       help='warmup teacher temperaure epochs')

    # regularization arguments
    group.add_argument('--qk-layernorm', action='store_true',
                       help='Whether to layer normalize the q and k attention embeddings.')

    return parser

def _add_moe_args(parser):
    group = parser.add_argument_group(title="moe")
    group.add_argument('--expert-model-parallel-size', type=int, default=1,
                       help='Degree of expert model parallelism.')
    group.add_argument('--num-experts', type=int, default=None,
                       help='Number of Experts in MoE (None means no MoE)')
    group.add_argument('--moe-router-load-balancing-type', type=str,
                       choices=['aux_loss', 'sinkhorn', "none"],
                       default='aux_loss',
                       help='Determines the load balancing strategy for the router. "aux_loss" corresponds to the load balancing loss used in GShard and SwitchTransformer, "sinkhorn" corresponds to the balancing algorithm used in S-BASE, and "none" implies no load balancing. The default is "aux_loss".')
    group.add_argument('--moe-router-topk', type=int, default=2,
                       help='Number of experts to route to for each token. The default is 2.')
    group.add_argument('--moe-grouped-gemm', action='store_true',
                       help='When there are multiple experts per rank, compress multiple local (potentially small) gemms in a single kernel launch to improve the utilization and performance by leveraging the Grouped GEMM feature introduced since CUTLASS 2.8 (https://github.com/fanshiqing/grouped_gemm).')
    group.add_argument('--moe-aux-loss-coeff', type=float, default=0.0,
                       help='Scaling coefficient for the aux loss: a starting value of 1e-2 is recommended.')
    group.add_argument('--moe-z-loss-coeff', type=float, default=None,
                       help='Scaling coefficient for the z-loss: a starting value of 1e-3 is recommended.')
    group.add_argument('--moe-input-jitter-eps', type=float, default=None,
                       help='Add noise to the input tensor by applying jitter with a specified epsilon value.')
    group.add_argument('--moe-token-dispatcher-type', type=str,
                       choices=['allgather', 'alltoall'],
                       default='allgather',
                       help='.')
    group.add_argument('--moe-per-layer-logging', action='store_true',
                       help='Enable per-layer logging for MoE, currently supports auxiliary loss and z loss.')
    # Token dropping arguments
    group.add_argument('--moe-expert-capacity-factor', type=float, default=None,
                       help='The capacity factor for each expert, None means no token will be dropped.')
    group.add_argument('--moe-pad-expert-input-to-capacity', action='store_true',
                       help='Pads the input for each expert to match the expert capacity length, effective only after the --moe-expert-capacity-factor is set.')
    group.add_argument('--moe-token-drop-policy', type=str, default='probs', choices=['probs', 'position'],
                       help='The policy to drop tokens. Can be either "probs" or "position". If "probs", the tokens with the lowest probabilities will be dropped. If "position", tokens at the end of each batch will be dropped.')
    group.add_argument('--moe-layer-recompute', action='store_true',
                       help='Enable checkpointing for moe_layer, should be used when memory is not sufficient.')
    group.add_argument('--moe-extended-tp', action='store_true',
                       help='Alternative to expert parallelism, all experts are sharded across TPXEP domain.')

    return parser

def _add_experimental_args(parser):
    group = parser.add_argument_group(title='experimental')

    group.add_argument('--spec', type=str, default=None, nargs='*',
                       help='Specify the <module_location function_name> pair '
                       'that returns a spec to customize a model, transformer '
                       'block, or transformer layer, depending on the use case.'
                       'To use local spec specify local as the argument.'
                       'For more details, see the model class, '
                       '`transformer_block.py`, or `transformer_layer.py`')
    group.add_argument('--hybrid-attention-ratio', type=float, default=0.0,
                       help='Ratio of attention layers to total layers, in the '
                       'range [0.0, 1.0].')
    group.add_argument('--hybrid-mlp-ratio', type=float, default=0.0,
                       help='Ratio of mlp layers to total layers, in the '
                       'range [0.0, 1.0].')
    group.add_argument('--hybrid-override-pattern', type=str, default=None,
                       help='Force a specific hybrid layer pattern. If a value'
                       'greater than 0.0 is supplied to any of the hybrid ratio'
                       'arguments, then the number of each type of layer in the'
                       'override pattern must match number in the overidden'
                       'pattern')
    group.add_argument('--yaml-cfg', type=str, default=None,
                       help = 'Config file to add additional arguments')

    return parser