module.py 6.6 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.

"""Megatron Module."""
from typing import Optional, Tuple

import torch
from torch.autograd import Variable
from torch.nn.parameter import Parameter

from megatron.core import parallel_state
from megatron.core.dist_checkpointing.mapping import ShardedStateDict
from megatron.core.transformer.transformer_config import TransformerConfig
from megatron.core.transformer.utils import (
    make_sharded_tensors_for_checkpoint,
    sharded_state_dict_default,
)

_FLOAT_TYPES = (torch.FloatTensor, torch.cuda.FloatTensor)
_HALF_TYPES = (torch.HalfTensor, torch.cuda.HalfTensor)
_BF16_TYPES = (torch.BFloat16Tensor, torch.cuda.BFloat16Tensor)


def param_is_not_shared(param):
    return not hasattr(param, 'shared') or not param.shared


class MegatronModule(torch.nn.Module):
    """Base Megatron module inhertied by all Models.

    Megatron specific extensions of torch Module with support
    for pipelining

    Args:
        config (TransformerConfig): Transformer config
    """

    # def __init__(self, config: TransformerConfig, share_word_embeddings=True):
    def __init__(self, config: TransformerConfig):
        super().__init__()
        self.config = config

    def state_dict_for_save_checkpoint(self, prefix: str = '', keep_vars: bool = False):
        """Override state dict for saving checkpoints Use this function to override the
        state dict for saving checkpoints.

        Args:
            prefix (str, optional): _description_. Defaults to ''.
            keep_vars (bool, optional): _description_. Defaults to False.

        Returns:
            _type_: _description_
        """

        return self.state_dict(prefix=prefix, keep_vars=keep_vars)

    def sharded_state_dict(
        self,
        prefix: str = '',
        sharded_offsets: Tuple[Tuple[int, int, int]] = (),
        metadata: Optional[dict] = None,
    ) -> ShardedStateDict:
        """Default implementation for sharded state dict for distributed checkpointing.

        General definition of sharded_state_dict simply calls `sharded_state_dict_default`
        (which call sharded_state_dict method if possible or a default implementation otherwise)
        recursively on all submodules.

        Args:
            prefix (str): prefix for the state dict keys
            sharded_offsets (Tuple[Tuple[int, int, int]], optional): sharding already
                applied (e.g. PP related) by sup-modules. Passed along to ShardedTensor
            metadata (dict, optional): metadata passed recursively to sharded_state_dict methods

        Returns:
            dict: dictionary of state dict keys mapped to ShardedTensors
        """
        sharded_state_dict = {}
        # Save parameters
        self._save_to_state_dict(sharded_state_dict, '', keep_vars=True)
        sharded_state_dict = make_sharded_tensors_for_checkpoint(
            sharded_state_dict, prefix, sharded_offsets=sharded_offsets
        )
        # Recurse into submodules
        for name, module in self.named_children():
            sharded_state_dict.update(
                sharded_state_dict_default(module, f'{prefix}{name}.', sharded_offsets, metadata)
            )
        return sharded_state_dict

    def set_is_first_microbatch(self):
        """Sets the is_first_microbatch flag if it exists. When this flag is set, TE modules will update their fp8 parameter cache.
        
        """
        for m in self.modules():
            if hasattr(m, "is_first_microbatch"):
                m.is_first_microbatch = True


def conversion_helper(val, conversion):
    if not isinstance(val, (tuple, list)):
        return conversion(val)
    rtn = [conversion_helper(v, conversion) for v in val]
    if isinstance(val, tuple):
        rtn = tuple(rtn)
    return rtn


def fp32_to_float16(val, float16_convertor):
    def half_conversion(val):
        val_typecheck = val
        if isinstance(val_typecheck, (Parameter, Variable)):
            val_typecheck = val.data
        if isinstance(val_typecheck, _FLOAT_TYPES):
            val = float16_convertor(val)
        return val

    return conversion_helper(val, half_conversion)


def float16_to_fp32(val):
    def float_conversion(val):
        val_typecheck = val
        if isinstance(val_typecheck, (Parameter, Variable)):
            val_typecheck = val.data
        if isinstance(val_typecheck, (_BF16_TYPES, _HALF_TYPES)):
            val = val.float()
        return val

    return conversion_helper(val, float_conversion)


class Float16Module(MegatronModule):
    """Float 16 Module.

    Attributes:
        config (TransformerConfig): Transformer config
        fp16 (bool) : Specifies if the model runs in fp16 mode
        bf16 (bool) : Specifies if the model runs in bf16 mode

    Args:
        config (TransformerConfig): The transformer config used to initalize the model
    """

    def __init__(self, config: TransformerConfig, module: torch.nn.Module):
        super(Float16Module, self).__init__(config)
        self.config = config
        self.fp16 = config.fp16
        self.bf16 = config.bf16

        if self.fp16:
            self.add_module('module', module.half())

            def float16_convertor(val):
                return val.half()

        elif self.bf16:
            self.add_module('module', module.bfloat16())

            def float16_convertor(val):
                return val.bfloat16()

        else:
            raise Exception('Either config.fp16 or config.bf16 should be True.')

        self.float16_convertor = float16_convertor

    def set_input_tensor(self, input_tensor):
        return self.module.set_input_tensor(input_tensor)

    def forward(self, *inputs, **kwargs):
        if parallel_state.is_pipeline_first_stage():
            inputs = fp32_to_float16(inputs, self.float16_convertor)
        outputs = self.module(*inputs, **kwargs)
        if parallel_state.is_pipeline_last_stage():
            outputs = float16_to_fp32(outputs)
        return outputs

    def state_dict(self, destination=None, prefix='', keep_vars=False):
        return self.module.state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars)

    def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
        """Retrieve state_dict from the module being wrapped."""
        return self.module.state_dict_for_save_checkpoint(prefix=prefix, keep_vars=keep_vars)

    def sharded_state_dict(self, prefix='', *args, **kwargs):
        """Retrieve sharded_state_dict from the module being wrapped."""
        return self.module.sharded_state_dict(prefix, *args, **kwargs)

    def load_state_dict(self, state_dict, strict=True):
        self.module.load_state_dict(state_dict, strict=strict)