timers.py 14.6 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.

"""Megatron timers."""

import time
from abc import ABC, abstractmethod
from typing import List

import torch


class TimerBase(ABC):
    def __init__(self, name):
        self.name = name

    @abstractmethod
    def start(self, barrier=False):
        pass

    @abstractmethod
    def stop(self, barrier=False):
        pass

    @abstractmethod
    def reset(self):
        pass

    @abstractmethod
    def elapsed(self, reset=True, barrier=False):
        pass


class DummyTimer(TimerBase):
    def __init__(self):
        super().__init__('dummy timer')

    def start(self, barrier=False):
        return

    def stop(self, barrier=False):
        return

    def reset(self):
        return

    def elapsed(self, reset=True, barrier=False):
        raise Exception('dummy timer should not be used to calculate elapsed time')


class Timer(TimerBase):
    """
    Timer class with ability to start/stop.

    Comment on using `barrier`: If this flag is passed, then all
    the caller processes will wait till all reach the timing routine.
    It is up to the user to make sure all the ranks in `barrier_group`
    call it otherwise, it will result in a hang.
    Comment on `barrier_group`: By default it is set to None which
    in torch distributed land, it will result in the global communicator.
    """

    def __init__(self, name):
        """Initialize Timer.

        Args:
            name (str): Name of the timer.
        """
        super().__init__(name)
        self._elapsed = 0.0
        self._active_time = 0.0
        self._started = False
        # Note that None will default to the global process group
        self._barrier_group = None
        self._start_time = time.time()

    def set_barrier_group(self, barrier_group):
        """Sets barrier group.

        Args:
            barrier_group (ProcessGroup): Torch ProcessGroup for barrier.
        """
        self._barrier_group = barrier_group

    def start(self, barrier=False):
        """Start the timer.

        Args:
            barrier (bool, optional): Synchronizes ranks before starting. Defaults to False.
        """
        assert not self._started, 'timer has already been started'
        if barrier:
            torch.distributed.barrier(group=self._barrier_group)
        torch.cuda.synchronize()
        self._start_time = time.time()
        self._started = True

    def stop(self, barrier=False):
        """Stop the timer.

        Args:
            barrier (bool, optional): Synchronizes ranks before stopping. Defaults to False.
        """
        assert self._started, 'timer is not started'
        if barrier:
            torch.distributed.barrier(group=self._barrier_group)
        torch.cuda.synchronize()
        elapsed = time.time() - self._start_time
        self._elapsed += elapsed
        self._active_time += elapsed
        self._started = False

    def reset(self):
        """Reset timer.
        """
        # Don't reset _active_time
        self._elapsed = 0.0
        self._started = False

    def elapsed(self, reset=True, barrier=False):
        """Calculates the elapsed time and restarts timer.

        Args:
            reset (bool, optional): Resets timer before restarting. Defaults to True.
            barrier (bool, optional): Synchronizes ranks before stopping. Defaults to False.

        Returns:
            float: Elapsed time.
        """
        _started = self._started
        # If the timing in progress, end it first.
        if self._started:
            self.stop(barrier=barrier)
        # Get the elapsed time.
        _elapsed = self._elapsed
        # Reset the elapsed time
        if reset:
            self.reset()
        # If timing was in progress, set it back.
        if _started:
            self.start(barrier=barrier)
        return _elapsed

    def active_time(self):
        return self._active_time


class Timers:
    """Class for a group of Timers.
    """

    def __init__(self, log_level, log_option):
        """Initialize group of timers.

        Args:
            log_level (int): Log level to control what timers are enabled.            
            log_option (str): Setting for logging statistics over ranks for all the timers. Allowed: ['max', 'minmax', 'all'].
        """
        self._log_level = log_level
        allowed_log_options = set(['max', 'minmax', 'all'])
        assert (
            log_option in allowed_log_options
        ), 'input log option {} is invalid. It must be one of {}'.format(
            log_option, allowed_log_options
        )
        self._log_option = log_option
        self._timers = {}
        self._log_levels = {}
        self._dummy_timer = DummyTimer()
        self._max_log_level = 2

    def __call__(self, name, log_level=None):
        """Call timer with name and log level."""
        # If the timer has already been set, then check if the log-level
        # is provided, it matches the one that the timer was created with.
        if name in self._timers:
            if log_level is not None:
                assert log_level == self._log_levels[name], (
                    'input log level {} does not match already existing '
                    'log level {} for {} timer'.format(log_level, self._log_levels[name], name)
                )
            return self._timers[name]
        # If timer does not exist and no log level is provided,
        # set it to the max log level which is 2.
        if log_level is None:
            log_level = self._max_log_level
        assert (
            log_level <= self._max_log_level
        ), 'log level {} is larger than max supported log level {}'.format(
            log_level, self._max_log_level
        )
        # Now if the input log level is larger than the one set for
        # the timers class, just ignore it and return a dummy timer.
        if log_level > self._log_level:
            return self._dummy_timer
        # Otherwise, initalize the timer and set the level.
        self._timers[name] = Timer(name)
        self._log_levels[name] = log_level
        return self._timers[name]

    def _get_elapsed_time_all_ranks(self, names, reset, barrier):
        """Returns elapsed times of timers in names.
        Assumptions:
            - All the ranks call this function.
            - `names` are identical on all ranks.
        If the above assumptions are not met, calling this function will
        result in hang.

        Args:
            names (List[str]): list of timer names
            reset (bool): reset the timer after recording the elapsed time
            barrier (bool): if set, do a global barrier before time measurments

        Returns:
            torch.tensor: Tensor of size [world_size, len(names)] with times in float.
        """

        # First make sure all the callers are in sync.
        if barrier:
            torch.distributed.barrier()

        world_size = torch.distributed.get_world_size()
        rank = torch.distributed.get_rank()

        # Here we can use gather on the rank we want to print the
        # timing, however, there is no gather_base support in
        # pytorch yet. It is simpler to deal with a single tensor
        # and since we are only gathering a small amount of data,
        # it should be ok to use all-gather instead of gather.
        rank_name_to_time = torch.zeros(
            (world_size, len(names)), dtype=torch.float, device=torch.cuda.current_device()
        )
        for i, name in enumerate(names):
            if name in self._timers:
                # Here we don't need to pass the barrier flag as all
                # the processes are already in sync. This avoids the
                # issue of different timers having different barrier
                # groups inside their class.
                rank_name_to_time[rank, i] = self._timers[name].elapsed(reset=reset)

        # See the note above for why we are not using gather.
        torch.distributed._all_gather_base(
            rank_name_to_time.view(-1), rank_name_to_time[rank, :].view(-1)
        )

        return rank_name_to_time

    def _get_global_min_max_time(self, names, reset, barrier, normalizer):
        """Report only min and max times across all ranks."""

        rank_name_to_time = self._get_elapsed_time_all_ranks(names, reset, barrier)
        name_to_min_max_time = {}
        for i, name in enumerate(names):
            rank_to_time = rank_name_to_time[:, i]
            # filter out the ones we did not have any timings for
            rank_to_time = rank_to_time[rank_to_time > 0.0]
            # If the timer exists:
            if rank_to_time.numel() > 0:
                name_to_min_max_time[name] = (
                    rank_to_time.min().item() / normalizer,
                    rank_to_time.max().item() / normalizer,
                )
        return name_to_min_max_time

    def _get_global_min_max_time_string(self, names, reset, barrier, normalizer, max_only):
        """Report strings for max/minmax times across all ranks."""
        name_to_min_max_time = self._get_global_min_max_time(names, reset, barrier, normalizer)
        if not name_to_min_max_time:
            return None
        if max_only:
            output_string = 'max time across ranks (ms):'
        else:
            output_string = '(min, max) time across ranks (ms):'
        for name in name_to_min_max_time:
            min_time, max_time = name_to_min_max_time[name]
            if max_only:
                output_string += '\n    {}: {:.2f}'.format((name + ' ').ljust(48, '.'), max_time)
            else:
                output_string += '\n    {}: ({:.2f}, {:.2f})'.format(
                    (name + ' ').ljust(48, '.'), min_time, max_time
                )
        return output_string

    def _get_all_ranks_time_string(self, names, reset, barrier, normalizer):
        """Report times across all ranks."""
        rank_name_to_time = self._get_elapsed_time_all_ranks(names, reset, barrier)

        output_string = 'times across ranks (ms):'
        no_reported_timing = True
        for i, name in enumerate(names):
            not_yet_found = True
            for rank in range(torch.distributed.get_world_size()):
                if rank_name_to_time[rank, i] > 0:
                    no_reported_timing = False
                    if not_yet_found:
                        not_yet_found = False
                        output_string += '\n  {}:'.format(name)
                    output_string += '\n     rank {:2d}: {:.2f}'.format(
                        rank, rank_name_to_time[rank, i] / normalizer
                    )
        if no_reported_timing:
            return None
        return output_string

    def get_all_timers_string(
        self,
        names: List[str] = None,
        normalizer: float = 1.0,
        reset: bool = True,
        barrier: bool = False,
    ):
        """Returns the output string with logged timer values according to configured options.

        Args:
            names (List[str]): Names of the timers to log. If None, all registered timers are fetched. Defaults to None.
            normalizer (float, optional): Normalizes the timer values by the factor. Defaults to 1.0.
            reset (bool, optional): Whether to reset timer values after logging. Defaults to True.
            barrier (bool, optional): Whether to do a global barrier before time measurments. Defaults to False.

        Raises:
            Exception: Raises if log option is invalid.

        Returns:
            str: Formatted string with the timer values.
        """

        if names == None:  # get all registered timers
            names = self._timers.keys()

        assert normalizer > 0.0
        if self._log_option in ['max', 'minmax']:
            max_only = False
            if self._log_option == 'max':
                max_only = True
            output_string = self._get_global_min_max_time_string(
                names, reset, barrier, normalizer / 1000.0, max_only
            )
        elif self._log_option == 'all':
            output_string = self._get_all_ranks_time_string(
                names, reset, barrier, normalizer / 1000.0
            )
        else:
            raise Exception('unknown timing log option {}'.format(self._log_option))
        return output_string

    def log(
        self,
        names: List[str],
        rank: int = None,
        normalizer: float = 1.0,
        reset: bool = True,
        barrier: bool = False,
    ):
        """logs the timers passed in names to stdout. Example usage is to log average per step value for timer 'foo',
          this function can be called with normalizer factor set to logging interval. 

        Args:
            names (List[str]): Names of the timers to log.
            rank (int, optional): logs the timers to a specific rank. If set to None, logs to the last rank. Defaults to None.
            normalizer (float, optional): Normalizes the timer values by the factor. Defaults to 1.0.
            reset (bool, optional): Whether to reset timer values after logging. Defaults to True.
            barrier (bool, optional): Whether to do a global barrier before time measurments. Defaults to False.
        """

        output_string = self.get_all_timers_string(names, normalizer, reset, barrier)
        # If no input rank is provided, log on last rank.
        if rank is None:
            rank = torch.distributed.get_world_size() - 1
        if rank == torch.distributed.get_rank() and output_string is not None:
            print(output_string, flush=True)

    def write(
        self,
        names: List[str],
        writer,
        iteration: int,
        normalizer: float = 1.0,
        reset: bool = True,
        barrier: bool = False,
    ):
        """Write timers to a tensorboard writer. Note that we only report maximum time across ranks to tensorboard.

        Args:
            names (List[str]): Names of the timers to log.
            writer (SummaryWriter): Tensorboard SummaryWriter object
            iteration (int): Current iteration.
            normalizer (float, optional): Normalizes the timer values by the factor. Defaults to 1.0.
            reset (bool, optional): Whether to reset timer values after logging. Defaults to True.
            barrier (bool, optional): Whether to do a global barrier before time measurments. Defaults to False.
        """
        # currently when using add_scalars,
        # torch.utils.add_scalars makes each timer its own run, which
        # polutes the runs list, so we just add each as a scalar
        assert normalizer > 0.0
        name_to_min_max_time = self._get_global_min_max_time(names, reset, barrier, normalizer)
        if writer is not None:
            for name in name_to_min_max_time:
                _, max_time = name_to_min_max_time[name]
                writer.add_scalar(name + '-time', max_time, iteration)