mamba_mixer.py 18.1 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# Copyright (c) 2024, Tri Dao, Albert Gu.
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.

# Some of this code was adopted from https://github.com/state-spaces/mamba/
# This source code is licensed under the Apache license found in the
# LICENSE file in the root directory of this source tree.

import math

import torch
import torch.nn as nn
import torch.nn.functional as F

from megatron.core.parallel_state import get_tensor_model_parallel_world_size
from megatron.core.tensor_parallel import (
    ColumnParallelLinear,
    RowParallelLinear,
    copy_to_tensor_model_parallel_region,
    gather_from_sequence_parallel_region,
    get_cuda_rng_tracker,
    reduce_from_tensor_model_parallel_region,
    reduce_scatter_to_sequence_parallel_region,
)
from megatron.core.transformer.module import MegatronModule
from megatron.core.transformer.transformer_config import TransformerConfig

try:
    from mamba_ssm.ops.triton.selective_state_update import selective_state_update
except ImportError:
    selective_state_update = None

try:
    from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
except ImportError:
    causal_conv1d_fn = None
    causal_conv1d_update = None

try:
    from mamba_ssm.ops.triton.layernorm_gated import RMSNorm as RMSNormGated
    from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined
except ImportError:
    raise ImportError("mamba-ssm is required by the Mamba model but cannot be imported")

try:
    from einops import rearrange, repeat
except ImportError:
    raise ImportError("einops is required by the Mamba model but cannot be imported")


class Mamba(MegatronModule):
    def __init__(
        self,
        config: TransformerConfig,
        d_model,
        d_state=128,
        d_conv=4,
        conv_init=None,
        expand=2,
        headdim=64,
        ngroups=8,
        A_init_range=(1, 16),
        D_has_hdim=False,
        rmsnorm=True,
        norm_before_gate=False,
        dt_min=0.001,
        dt_max=0.1,
        dt_init="random",
        dt_scale=1.0,
        dt_init_floor=1e-4,
        bias=False,
        conv_bias=True,
        # Fused kernel and sharding options
        chunk_size=128,
        use_fast_path=True,
        layer_idx=None,
    ):
        super().__init__(config)
        self.config = config
        self.d_model = d_model
        self.d_state = d_state
        self.d_conv = d_conv
        self.conv_init = conv_init
        self.expand = expand
        self.d_inner = int(self.expand * self.d_model)
        self.headdim = headdim
        self.ngroups = ngroups
        assert self.d_inner % self.headdim == 0
        self.nheads = self.d_inner // self.headdim
        self.D_has_hdim = D_has_hdim
        self.rmsnorm = rmsnorm
        self.norm_before_gate = norm_before_gate
        self.chunk_size = chunk_size
        self.use_fast_path = use_fast_path
        self.layer_idx = layer_idx

        self.tensor_model_parallel_size = get_tensor_model_parallel_world_size()
        assert self.d_inner % self.tensor_model_parallel_size == 0
        assert self.ngroups % self.tensor_model_parallel_size == 0
        assert self.nheads % self.tensor_model_parallel_size == 0
        assert not bias

        self.d_inner_local = self.d_inner // self.tensor_model_parallel_size
        self.ngroups_local = self.ngroups // self.tensor_model_parallel_size
        self.nheads_local = self.nheads // self.tensor_model_parallel_size

        assert self.d_inner_local % self.ngroups_local == 0

        # Assume sequence parallelism: input is already partitioned along the
        # sequence dimension
        self.in_proj = ColumnParallelLinear(
            self.d_model,
            self.d_inner * 2 + 2 * self.ngroups * self.d_state + self.nheads,
            config=self.config,
            init_method=self.config.init_method,
            gather_output=False,
            bias=bias,
        )

        conv_dim = self.d_inner_local + 2 * self.ngroups_local * self.d_state
        with get_cuda_rng_tracker().fork():
            self.conv1d = nn.Conv1d(
                in_channels=conv_dim,
                out_channels=conv_dim,
                bias=conv_bias,
                kernel_size=d_conv,
                groups=conv_dim,
                padding=d_conv - 1,
                device=torch.cuda.current_device(),
                dtype=config.params_dtype,
            )
            setattr(self.conv1d.weight, 'tensor_model_parallel', True)
            setattr(self.conv1d.bias, 'tensor_model_parallel', True)

            if self.conv_init is not None:
                nn.init.uniform_(self.conv1d.weight, -self.conv_init, self.conv_init)

        self.activation = "silu"
        self.act = nn.SiLU()

        with get_cuda_rng_tracker().fork():
            # Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max
            dt = torch.exp(
                torch.rand(
                    self.nheads_local, device=torch.cuda.current_device(), dtype=config.params_dtype
                )
                * (math.log(dt_max) - math.log(dt_min))
                + math.log(dt_min)
            ).clamp(min=dt_init_floor)
            # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
            inv_dt = dt + torch.log(-torch.expm1(-dt))
            with torch.no_grad():
                self.dt_bias = nn.Parameter(inv_dt)
            # Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit
            self.dt_bias._no_reinit = True
            # Just to be explicit. Without this we already don't put wd on dt_bias because of the check
            # name.endswith("bias") in param_grouping.py
            self.dt_bias._no_weight_decay = True

            assert A_init_range[0] > 0 and A_init_range[1] >= A_init_range[0]
            A = torch.empty(
                self.nheads_local, dtype=torch.float32, device=torch.cuda.current_device()
            ).uniform_(*A_init_range)
            A_log = torch.log(A)  # Keep A_log in fp32
            self.A_log = nn.Parameter(A_log)
            self.A_log._no_weight_decay = True
            setattr(self.A_log, 'tensor_model_parallel', True)

        # D "skip" parameter
        self.D = nn.Parameter(
            torch.ones(
                self.d_inner_local if self.D_has_hdim else self.nheads_local,
                device=torch.cuda.current_device(),
            )
        )  # Keep in fp32
        self.D._no_weight_decay = True
        setattr(self.D, 'tensor_model_parallel', True)

        if self.rmsnorm:
            assert RMSNormGated is not None
            self.norm = RMSNormGated(
                self.d_inner_local,
                eps=1e-5,
                group_size=self.d_inner_local // self.ngroups_local,
                norm_before_gate=False,
                device=torch.cuda.current_device(),
                dtype=config.params_dtype,
            )

        # Assume sequence parallelism: input is partitioned along d_inner and
        # output is partitioned along the sequence dimension
        self.out_proj = RowParallelLinear(
            self.d_inner,
            self.d_model,
            config=self.config,
            init_method=self.config.output_layer_init_method,
            bias=bias,
            input_is_parallel=True,
            skip_bias_add=False,
        )

    def forward(self, hidden_states, inference_params=None):
        """
        hidden_states: (nL, B, D) / (L B D)
        Returns: same shape as hidden_states
        """
        _, batch, dim = hidden_states.shape

        conv_state, ssm_state = None, None
        if inference_params is not None:
            assert not self.config.sequence_parallel
            conv_state, ssm_state = self._get_states_from_cache(inference_params, batch)
            if inference_params.seqlen_offset > 0:
                # The states are updated inplace
                out, _, _ = self.step(hidden_states, conv_state, ssm_state)
                return out

        # (nheads_local)
        A = -torch.exp(self.A_log.float())

        # pl b d ->  l b p(2d)
        # TODO move transpose to GEMM
        if self.config.sequence_parallel:
            # gather data along sequenece dimension
            hidden_states = gather_from_sequence_parallel_region(hidden_states)
        else:
            hidden_states = copy_to_tensor_model_parallel_region(hidden_states)
        xz = hidden_states @ self.in_proj.weight.t()

        z, xBC, dt = torch.split(
            xz,
            [
                self.d_inner_local,
                self.d_inner_local + 2 * self.ngroups_local * self.d_state,
                self.nheads_local,
            ],
            dim=-1,
        )

        # transpose: l b pd --> b pd l
        xBC = rearrange(xBC, "l b d -> b d l")
        xBC = xBC.contiguous()

        # Compute short convolution
        if conv_state is not None:
            # If we just take x[:, :, -self.d_conv :], it will error if seqlen < self.d_conv
            # Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise.
            conv_state.copy_(F.pad(xBC, (self.d_conv - xBC.shape[-1], 0)))  # Update state (B D W)

        seqlen = xBC.size(2)
        if causal_conv1d_fn is None:
            xBC = self.act(self.conv1d(xBC)[..., :seqlen])
        else:
            assert self.activation in ["silu", "swish"]
            xBC = causal_conv1d_fn(
                x=xBC,
                weight=rearrange(self.conv1d.weight, "d 1 w -> d w"),
                bias=self.conv1d.bias,
                activation=self.activation,
            )

        # transpose b pd l --> l b pd
        xBC = rearrange(xBC, "b d l ->  l b d")
        xBC = xBC.contiguous()

        x, B, C = torch.split(
            xBC,
            [
                self.d_inner_local,
                self.ngroups_local * self.d_state,
                self.ngroups_local * self.d_state,
            ],
            dim=-1,
        )

        # TODO Vijay: fuse most of the transposes with the GEMMS
        x = rearrange(x, "l b (h p) -> b l h p", p=self.headdim).contiguous()
        dt = rearrange(dt, "l b d -> b l d").contiguous()
        B = rearrange(B, "l b (g n) -> b l g n", n=self.d_state).contiguous()
        C = rearrange(C, "l b (g n) -> b l g n", n=self.d_state).contiguous()
        z = rearrange(z, "l b (h p) -> b l h p", p=self.headdim).contiguous()
        y = mamba_chunk_scan_combined(
            x,
            dt,
            A,
            B,
            C,
            self.chunk_size,
            D=rearrange(self.D.float(), "(h p) -> h p", p=self.headdim)
            if self.D_has_hdim
            else self.D,
            z=z if not self.rmsnorm else None,
            dt_bias=self.dt_bias.float(),
            dt_softplus=True,
            return_final_states=ssm_state is not None,
        )

        if ssm_state is not None:
            y, last_state = y
            ssm_state.copy_(last_state)

        if self.rmsnorm:
            y = rearrange(y, "b l h p -> b l (h p)").contiguous()
            z = rearrange(z, "b l h p -> b l (h p)").contiguous()
            y = self.norm(y, z)
            y = rearrange(y, "b l d -> l b d").contiguous()
        else:
            y = rearrange(y, "b l h p -> l b (h p)").contiguous()

        #  l b pd --> pl b d
        out_full = y @ self.out_proj.weight.t()
        if self.config.sequence_parallel:
            out = reduce_scatter_to_sequence_parallel_region(out_full)
        else:
            out = reduce_from_tensor_model_parallel_region(out_full)
        return out

    def step(self, hidden_states, conv_state, ssm_state):
        # assert self.ngroups_local == 1, "Only support ngroups=1 for inference for now"
        dtype = hidden_states.dtype
        assert hidden_states.shape[0] == 1, "Only support decoding with 1 token at a time for now"

        # l b d --> b d
        hidden_states = hidden_states.squeeze(0)

        #  b d_model --> b p(2d)
        xz = hidden_states @ self.in_proj.weight.t()

        z, xBC, dt = torch.split(
            xz,
            [
                self.d_inner_local,
                self.d_inner_local + 2 * self.ngroups_local * self.d_state,
                self.nheads_local,
            ],
            dim=-1,
        )

        # Conv step
        if causal_conv1d_update is None:
            conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1))  # Update state (B D W)
            conv_state[:, :, -1] = xBC
            xBC = torch.sum(
                conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1
            )  # (B D)
            if self.conv1d.bias is not None:
                xBC = xBC + self.conv1d.bias
            xBC = self.act(xBC).to(dtype=dtype)
        else:
            xBC = causal_conv1d_update(
                xBC,
                conv_state,
                rearrange(self.conv1d.weight, "d 1 w -> d w"),
                self.conv1d.bias,
                self.activation,
            )

        x, B, C = torch.split(
            xBC,
            [
                self.d_inner_local,
                self.ngroups_local * self.d_state,
                self.ngroups_local * self.d_state,
            ],
            dim=-1,
        )
        A = -torch.exp(self.A_log.float())

        # SSM step
        if selective_state_update is None:
            if self.ngroups_local > 1:
                B = rearrange(B, "b (g n) -> b g n", n=self.d_state)
                C = rearrange(C, "b (g n) -> b g n", n=self.d_state)
                B = repeat(B, "b g n -> b (g h) n", h=self.d_inner_local // self.ngroups_local)
                C = repeat(C, "b g n -> b (g h) n", h=self.d_inner_local // self.ngroups_local)

                dt = repeat(dt, "b h -> b (h p)", p=self.headdim)
                dt_bias = repeat(self.dt_bias, "h -> (h p)", p=self.headdim)
                A = repeat(A, "h -> (h p) n", p=self.headdim, n=self.d_state)
                D = repeat(self.D, "h -> (h p)", p=self.headdim)

                dt = F.softplus(dt + dt_bias.to(dtype=dt.dtype))
                dA = torch.exp(torch.einsum("bd,dn->bdn", dt, A))

                dB_x = torch.einsum('bd,bdn,bd->bdn', dt, B, x)
                ssm_state.copy_(
                    ssm_state * rearrange(dA, "b (h p) n -> b h p n", p=self.headdim)
                    + rearrange(dB_x, "b (h p) n -> b h p n", p=self.headdim)
                )

                y = torch.einsum(
                    "bdn,bdn->bd",
                    rearrange(ssm_state.to(dtype), "b h p n -> b (h p) n", p=self.headdim),
                    C,
                )
                y = y + D.to(dtype) * x
                if not self.rmsnorm:
                    y = y * self.act(z)  # (B D)
            else:
                # Discretize A and B (b (g n))
                dt = F.softplus(dt + self.dt_bias.to(dtype=dt.dtype))  # (batch, nheads)
                dA = torch.exp(dt * A)
                x = rearrange(x, "b (h p) -> b h p", p=self.headdim)
                dBx = torch.einsum("bh,bn,bhp->bhpn", dt, B, x)
                ssm_state.copy_(ssm_state * rearrange(dA, "b h -> b h 1 1") + dBx)
                y = torch.einsum("bhpn,bn->bhp", ssm_state.to(dtype), C)
                y = y + rearrange(self.D.to(dtype), "h -> h 1") * x
                y = rearrange(y, "b h p -> b (h p)")
                if not self.rmsnorm:
                    y = y * self.act(z)  # (B D)
        else:
            A = repeat(A, "h -> h p n", p=self.headdim, n=self.d_state).to(dtype=torch.float32)
            dt = repeat(dt, "b h -> b h p", p=self.headdim)
            dt_bias = repeat(self.dt_bias, "h -> h p", p=self.headdim)
            D = repeat(self.D, "h -> h p", p=self.headdim)
            B = rearrange(B, "b (g n) -> b g n", g=self.ngroups_local)
            C = rearrange(C, "b (g n) -> b g n", g=self.ngroups_local)
            x_reshaped = rearrange(x, "b (h p) -> b h p", p=self.headdim)
            if not self.rmsnorm:
                z = rearrange(z, "b (h p) -> b h p", p=self.headdim)
            y = selective_state_update(
                ssm_state,
                x_reshaped,
                dt,
                A,
                B,
                C,
                D,
                z=z if not self.rmsnorm else None,
                dt_bias=dt_bias,
                dt_softplus=True,
            )
            y = rearrange(y, "b h p -> b (h p)")

        if self.rmsnorm:
            y = self.norm(y, z)

        # b pd --> b d
        out = y @ self.out_proj.weight.t()
        out = reduce_from_tensor_model_parallel_region(out)
        return out.unsqueeze(0), conv_state, ssm_state

    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None):
        device = self.out_proj.weight.device
        conv_dtype = self.conv1d.weight.dtype if dtype is None else dtype
        conv_state = torch.zeros(
            batch_size, self.conv1d.weight.shape[0], self.d_conv, device=device, dtype=conv_dtype
        )
        ssm_dtype = self.in_proj.weight.dtype if dtype is None else dtype
        # ssm_dtype = torch.float32
        ssm_state = torch.zeros(
            batch_size,
            self.nheads_local,
            self.headdim,
            self.d_state,
            device=device,
            dtype=ssm_dtype,
        )
        return conv_state, ssm_state

    def _get_states_from_cache(self, inference_params, batch_size, initialize_states=False):
        assert self.layer_idx is not None
        if self.layer_idx not in inference_params.key_value_memory_dict:
            conv_state = torch.zeros(
                batch_size,
                self.conv1d.weight.shape[0],
                self.d_conv,
                device=self.conv1d.weight.device,
                dtype=self.conv1d.weight.dtype,
            )
            ssm_state = torch.zeros(
                batch_size,
                self.nheads_local,
                self.headdim,
                self.d_state,
                device=self.in_proj.weight.device,
                dtype=self.in_proj.weight.dtype,
            )
            inference_params.key_value_memory_dict[self.layer_idx] = (conv_state, ssm_state)
        else:
            conv_state, ssm_state = inference_params.key_value_memory_dict[self.layer_idx]
            # TODO: What if batch size changes between generation, and we reuse the same states?
            if initialize_states:
                conv_state.zero_()
                ssm_state.zero_()
        return conv_state, ssm_state