parallel_state.py 50.3 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""Model and data parallel groups."""

import os
import warnings
from datetime import timedelta
from typing import List, Optional

import torch

from .utils import GlobalMemoryBuffer

# Intra-layer model parallel group that the current rank belongs to.
_TENSOR_MODEL_PARALLEL_GROUP = None
# Inter-layer model parallel group that the current rank belongs to.
_PIPELINE_MODEL_PARALLEL_GROUP = None
# Model parallel group (both intra- and pipeline) that the current rank belongs to.
_MODEL_PARALLEL_GROUP = None
# Model parallel group (both intra-, pipeline, and expert) that the current rank belongs to.
_MODEL_AND_EXPERT_PARALLEL_GROUP = None
# Embedding group.
_EMBEDDING_GROUP = None
# Position embedding group.
_POSITION_EMBEDDING_GROUP = None
# Data parallel group that the current rank belongs to.
_DATA_PARALLEL_GROUP = None
_DATA_PARALLEL_GROUP_GLOO = None
# tensor model parallel group and data parallel group combined
# used for fp8 and moe training
_TENSOR_AND_DATA_PARALLEL_GROUP = None
# Expert parallel group that the current rank belongs to.
_EXPERT_MODEL_PARALLEL_GROUP = None
_TENSOR_AND_EXPERT_PARALLEL_GROUP = None
_DATA_MODULO_EXPERT_PARALLEL_GROUP = None
_DATA_MODULO_EXPERT_PARALLEL_GROUP_GLOO = None


_VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = None
_VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
_PIPELINE_MODEL_PARALLEL_SPLIT_RANK = None

# These values enable us to change the mpu sizes on the fly.
_MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = None
_MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
_MPU_EXPERT_MODEL_PARALLEL_WORLD_SIZE = None
_MPU_TENSOR_MODEL_PARALLEL_RANK = None
_MPU_PIPELINE_MODEL_PARALLEL_RANK = None
_MPU_EXPERT_MODEL_PARALLEL_RANK = None

# A list of ranks that have a copy of the embedding.
_EMBEDDING_GLOBAL_RANKS = None

# A list of ranks that have a copy of the position embedding.
_POSITION_EMBEDDING_GLOBAL_RANKS = None

# A list of global ranks for each pipeline group to ease calculation of the source
# rank when broadcasting from the first or last pipeline stage.
_PIPELINE_GLOBAL_RANKS = None

# A list of global ranks for each data parallel group to ease calculation of the source
# rank when broadcasting weights from src to all other data parallel ranks
_DATA_PARALLEL_GLOBAL_RANKS = None

# A list of global ranks for each tensor model parallel group to ease calculation of
# the first local rank in the tensor model parallel group
_TENSOR_MODEL_PARALLEL_GLOBAL_RANKS = None

# Context parallel group that the current rank belongs to
_CONTEXT_PARALLEL_GROUP = None
# A list of global ranks for each context parallel group to ease calculation of the
# destination rank when exchanging KV/dKV between context parallel_ranks
_CONTEXT_PARALLEL_GLOBAL_RANKS = None

# Data parallel group information with context parallel combined.
_DATA_PARALLEL_GROUP_WITH_CP = None
_DATA_PARALLEL_GROUP_WITH_CP_GLOO = None
_DATA_PARALLEL_GLOBAL_RANKS_WITH_CP = None

# combined parallel group of TP, DP, and CP used for fp8
_TENSOR_AND_DATA_PARALLEL_GROUP_WITH_CP = None

# Memory buffers to avoid dynamic memory allocation
_GLOBAL_MEMORY_BUFFER = None

# MOE logging
_MOE_AUX_LOSSES_LOGGING_TRACKER = {}


def get_nccl_options(pg_name, nccl_comm_cfgs):
    """Set the NCCL process group options.

    Args:
        pg_name (str): process group name
        nccl_comm_cfgs (dict): nccl communicator configurations

    When an option (e.g., max_ctas) is not found in the config, use the NCCL default setting.
    """
    if pg_name in nccl_comm_cfgs:
        nccl_options = torch.distributed.ProcessGroupNCCL.Options()
        nccl_options.config.cga_cluster_size = nccl_comm_cfgs[pg_name].get('cga_cluster_size', 4)
        nccl_options.config.max_ctas = nccl_comm_cfgs[pg_name].get('max_ctas', 32)
        nccl_options.config.min_ctas = nccl_comm_cfgs[pg_name].get('min_ctas', 1)
        return nccl_options
    else:
        return None


def generate_masked_orthogonal_rank_groups(
    world_size: int, parallel_size: List[int], mask: List[bool],
) -> List[List[int]]:
    """Generate orthogonal parallel groups based on the parallel size and mask.

    Arguments:
        world_size (int): world size

        parallel_size (List[int]):
            The parallel size of each orthogonal parallel type. For example, if
            tensor_parallel_size = 2, pipeline_model_parallel_group = 3, data_parallel_size = 4,
            and the parallel mapping order is tp-pp-dp, then the parallel_size = [2, 3, 4].

        mask (List[bool]):
            The mask controls which parallel methods the generated groups represent. If mask[i] is
            True, it means the generated group contains the i-th parallelism method. For example, 
            if parallel_size = [tp_size, pp_size, dp_size], and mask = [True, False , True], then 
            the generated group is the `tp-dp` group, if the mask = [False, True, False], then the 
            generated group is the `pp` group.

    Algorithm:
        For orthogonal parallelism, such as tp/dp/pp/cp, the global_rank and
        local_rank satisfy the following equation:
            global_rank = tp_rank + dp_rank * tp_size + pp_rank * tp_size * dp_size (1)
                tp_rank \in [0, tp_size)
                dp_rank \in [0, dp_size)
                pp_rank \in [0, pp_size)

        If we want to get the `dp_group` (tp_size * pp_size groups of dp_size ranks each.
        For example,  if the gpu size is 8 and order is 'tp-pp-dp', size is '2-2-2', and the 
        dp_group here is [[0, 4], [1, 5], [2, 6], [3, 7]].)
        The tp_rank and pp_rank will be combined to form the `dp_group_index`.
            dp_group_index = tp_rank + pp_rank * tp_size (2)

        So, Given that tp_rank and pp_rank satisfy equation (2), and dp_rank in
        range(0, dp_size), the ranks in dp_group[dp_group_index] satisfies the
        equation (1).
        
        This function solve this math problem.

    For example, if the parallel_size = [tp_size, dp_size, pp_size] = [2, 3, 4],
    and the mask = [False, True, False]. Then,
        dp_group_index(0) = tp_rank(0) + pp_rank(0) * 2
        dp_group_index(1) = tp_rank(1) + pp_rank(0) * 2
        ...
        dp_group_index(7) = tp_rank(1) + pp_rank(3) * 2

        dp_group[0] = 0 + range(0, 3) * 2 + 0 = [0, 2, 4]
        dp_group[1] = 1 + range(0, 3) * 2 + 0 = [1, 3, 5]
        ...
        dp_group[7] = 1 + range(0, 3) * 2 + 3 * 2 * 3 = [19, 21, 23]
    """

    def prefix_product(a: List[int], init=1) -> List[int]:
        r = [init]
        for v in a:
            init = init * v
            r.append(init)
        return r

    def inner_product(a: List[int], b: List[int]) -> int:
        return sum([x * y for x, y in zip(a, b)])

    def decompose(index, shape, stride=None):
        ''' 
        This function solve the math problem below:
            There is an equation: 
                index = sum(idx[i] * stride[i])
            And given the value of index, stride.
            Return the idx.
        This function will used to get the pp/dp/pp_rank
        from group_index and rank_in_group.
        '''
        if stride is None:
            stride = prefix_product(shape)
        idx = [(index // d) % s for s, d in zip(shape, stride)]
        # stride is a prefix_product result. And the value of stride[-1]
        # is not used.
        assert (
            sum([x * y for x, y in zip(idx, stride[:-1])]) == index
        ), "idx {} with shape {} mismatch the return idx {}".format(index, shape, idx)
        return idx

    masked_shape = [s for s, m in zip(parallel_size, mask) if m]
    unmasked_shape = [s for s, m in zip(parallel_size, mask) if not m]

    global_stride = prefix_product(parallel_size)
    masked_stride = [d for d, m in zip(global_stride, mask) if m]
    unmasked_stride = [d for d, m in zip(global_stride, mask) if not m]

    group_size = prefix_product(masked_shape)[-1]
    num_of_group = world_size // group_size

    ranks = []
    for group_index in range(num_of_group):
        # get indices from unmaksed for group_index.
        decomposed_group_idx = decompose(group_index, unmasked_shape)
        rank = []
        for rank_in_group in range(group_size):
            # get indices from masked for rank_in_group.
            decomposed_rank_idx = decompose(rank_in_group, masked_shape)
            rank.append(
                inner_product(decomposed_rank_idx, masked_stride)
                + inner_product(decomposed_group_idx, unmasked_stride)
            )
        ranks.append(rank)
    return ranks


class RankGenerator(object):
    def __init__(self, tp: int, ep: int, dp: int, pp: int, cp: int, order: str) -> None:
        self.tp = tp
        self.ep = ep
        self.dp = dp
        self.pp = pp
        self.cp = cp
        self.world_size = tp * dp * pp * cp

        self.name_to_size = {
            "tp": self.tp,
            "pp": self.pp,
            "dp": self.dp,
            "ep": self.ep,
            "cp": self.cp,
        }
        self.order = order
        order = order.lower()

        if 'ep' in order:
            if 'ep-dp' not in order and 'dp-ep' not in order:
                raise RuntimeError(f"The ep and dp must be adjacent in order ({self.order}).")

        for name in self.name_to_size.keys():
            if name not in order and self.name_to_size[name] != 1:
                raise RuntimeError(
                    f"The size of ({name}) is ({self.name_to_size[name]}), but you haven't specified the order ({self.order})."
                )
            elif name not in order:
                order = order + '-' + name

        self.order_w_ep = order
        self.order_wo_ep = '-'.join([token for token in order.split('-') if token != 'ep'])
        self.ordered_size_wo_ep = []
        self.ordered_size_w_ep = []

        for token in order.split('-'):
            if token == 'dp':
                self.ordered_size_w_ep.append(self.dp // self.ep)
                self.ordered_size_wo_ep.append(self.dp)
            elif token == 'ep':
                self.ordered_size_w_ep.append(self.ep)
            else:
                self.ordered_size_w_ep.append(self.name_to_size[token])
                self.ordered_size_wo_ep.append(self.name_to_size[token])

    def get_mask(self, order: str, token: str):
        ordered_token = order.split('-')
        token = token.split('-')
        mask = [False] * len(ordered_token)
        for t in token:
            mask[ordered_token.index(t)] = True
        return mask

    def get_ranks(self, token, independent_ep=False):
        '''Get rank group by input token.

        Arguments:
            token (str):
                Specify the ranks type that want to get. If we want
                to obtain multiple parallel types, we can use a hyphen
                '-' to separate them. For example, if we want to obtain
                the TP_DP group, the token should be 'tp-dp'.

            independent_ep (bool: True):
                This flag controls whether we treat EP and DP independently.
                EP shares ranks with DP, if we want to get ranks related to
                EP, we should set the flag. For example, get_ranks('dp', True)
                will get DP modulo EP group, and get_ranks('dp', False) will
                get full DP group.
        '''
        if independent_ep:
            parallel_size = self.ordered_size_w_ep
            order = self.order_w_ep
        else:
            parallel_size = self.ordered_size_wo_ep
            order = self.order_wo_ep
        mask = self.get_mask(order, token)
        ranks = generate_masked_orthogonal_rank_groups(self.world_size, parallel_size, mask)
        return ranks


def initialize_model_parallel(
    tensor_model_parallel_size: int = 1,
    pipeline_model_parallel_size: int = 1,
    virtual_pipeline_model_parallel_size: Optional[int] = None,
    pipeline_model_parallel_split_rank: Optional[int] = None,
    use_sharp: bool = False,
    context_parallel_size: int = 1,
    expert_model_parallel_size: int = 1,
    nccl_communicator_config_path: Optional[str] = None,
    distributed_timeout_minutes: int = 30,
    order: str = "tp-cp-ep-dp-pp",
) -> None:
    """Initialize model data parallel groups.

    Args:
        tensor_model_parallel_size (int, default = 1):
            The number of GPUs to split individual tensors across.

        pipeline_model_parallel_size (int, default = 1):
            The number of tensor parallel GPU groups to split the
            Transformer layers across. For example, if
            tensor_model_parallel_size is 4 and
            pipeline_model_parallel_size is 2, the model will be split
            into 2 groups of 4 GPUs.

        virtual_pipeline_model_parallel_size (int, optional):
            The number of stages that each pipeline group will have,
            interleaving as necessary. If None, no interleaving is
            performed. For example, if tensor_model_parallel_size is 1,
            pipeline_model_parallel_size is 4,
            virtual_pipeline_model_parallel_size is 2, and there are
            16 transformer layers in the model, the model will be
            split into 8 stages with two layers each and each GPU
            would get 2 stages as such (layer number starting with 1):

            GPU 0: [1, 2] [9, 10]
            GPU 1: [3, 4] [11, 12]
            GPU 2: [5, 6] [13, 14]
            GPU 3: [7, 8] [15, 16]

        pipeline_model_parallel_split_rank (int, optional):
            For models with both an encoder and decoder, the rank in
            pipeline to switch between encoder and decoder (i.e. the
            first rank of the decoder). This allows the user to set
            the pipeline parallel size of the encoder and decoder
            independently. For example, if
            pipeline_model_parallel_size is 8 and
            pipeline_model_parallel_split_rank is 3, then ranks 0-2
            will be the encoder and ranks 3-7 will be the decoder.

        use_sharp (bool, default = False):
            Set the use of SHARP for the collective communications of
            data-parallel process groups. When `True`, run barrier
            within each data-parallel process group, which specifies
            the SHARP application target groups.

        context_parallel_size (int, default = 1):
            The number of tensor parallel GPU groups to split the
            network input sequence length across. Compute of attention
            module requires tokens of full sequence length, so GPUs
            in a context parallel group need to communicate with each
            other to exchange information of other sequence chunks.
            Each GPU and its counterparts in other tensor parallel
            groups compose a context parallel group.

            For example, assume we have 8 GPUs, if tensor model parallel
            size is 4 and context parallel size is 2, the network input
            will be split into two sequence chunks, which are processed
            by 2 different groups of 4 GPUs. One chunk is processed by
            GPU0-3, the other chunk is processed by GPU4-7. Four groups
            are build to do context parallel communications: [GPU0, GPU4],
            [GPU1, GPU5], [GPU2, GPU6], and [GPU3, GPU7].

            Context parallelism partitions sequence length, so it has no
            impact on weights, which means weights are duplicated among
            GPUs in a context parallel group. Hence, weight gradients
            all-reduce is required in backward. For simplicity, we piggyback
            GPUs of context parallelism on data parallel group for
            weight gradient all-reduce.
        
        expert_model_parallel_size (int, default = 1):
            The number of Mixture of Experts parallel GPUs in each expert
            parallel group.

        nccl_communicator_config_path (str, default = None):
            Path to the yaml file of NCCL communicator configurations.
            `min_ctas`, `max_ctas`, and `cga_cluster_size` can be set
            for each communicator.

        distributed_timeout_minutes (int, default = 30): Timeout, in
            minutes,for operations executed against distributed
            process groups. See PyTorch documentation at
            https://pytorch.org/docs/stable/distributed.html for
            caveats.

        order (str, default=tp-dp-pp):
            The rank initialization order of parallelism. Now we support
            tp-dp-pp and tp-pp-dp orders.

    Let's say we have a total of 16 GPUs denoted by g0 ... g15 and we
    use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize
    the model pipeline. The present function will
    create 8 tensor model-parallel groups, 4 pipeline model-parallel groups
    and 8 data-parallel groups as:
        8 data_parallel groups:
            [g0, g2], [g1, g3], [g4, g6], [g5, g7], [g8, g10], [g9, g11], [g12, g14], [g13, g15]
        8 tensor model-parallel groups:
            [g0, g1], [g2, g3], [g4, g5], [g6, g7], [g8, g9], [g10, g11], [g12, g13], [g14, g15]
        4 pipeline model-parallel groups:
            [g0, g4, g8, g12], [g1, g5, g9, g13], [g2, g6, g10, g14], [g3, g7, g11, g15]
    Note that for efficiency, the caller should make sure adjacent ranks
    are on the same DGX box. For example if we are using 2 DGX-1 boxes
    with a total of 16 GPUs, rank 0 to 7 belong to the first box and
    ranks 8 to 15 belong to the second box.

    """
    # Get world size and rank. Ensure some consistencies.
    assert torch.distributed.is_initialized()
    world_size: int = torch.distributed.get_world_size()

    if (
        world_size
        % (tensor_model_parallel_size * pipeline_model_parallel_size * context_parallel_size)
        != 0
    ):
        raise RuntimeError(
            f"world_size ({world_size}) is not divisible by tensor_model_parallel_size "
            f"({tensor_model_parallel_size}) x pipeline_model_parallel_size ({pipeline_model_parallel_size}) "
            f"x context_parallel_size ({context_parallel_size})"
        )

    data_parallel_size: int = world_size // (
        tensor_model_parallel_size * pipeline_model_parallel_size * context_parallel_size
    )

    if data_parallel_size % expert_model_parallel_size != 0:
        raise RuntimeError(
            f"data_parallel_size ({data_parallel_size}) is not divisible by expert_model_parallel_size "
        )

    if expert_model_parallel_size > 1 and context_parallel_size > 1:
        raise RuntimeError(
            f"combination of expert model prallellism and context parallelism is not supported"
        )

    num_tensor_model_parallel_groups: int = world_size // tensor_model_parallel_size
    num_pipeline_model_parallel_groups: int = world_size // pipeline_model_parallel_size

    if virtual_pipeline_model_parallel_size is not None:
        if not pipeline_model_parallel_size > 1:
            raise RuntimeError(
                "pipeline-model-parallel size should be greater than 1 with interleaved schedule"
            )
        global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
        global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
        _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = 0
        _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = virtual_pipeline_model_parallel_size

    if pipeline_model_parallel_split_rank is not None:
        global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
        _PIPELINE_MODEL_PARALLEL_SPLIT_RANK = pipeline_model_parallel_split_rank

    rank = torch.distributed.get_rank()

    nccl_comm_cfgs = {}
    if nccl_communicator_config_path is not None:
        try:
            import yaml
        except ImportError:
            raise RuntimeError(
                "Cannot import `yaml`. Setting custom nccl communicator configs "
                "requires the yaml package."
            )

        with open(nccl_communicator_config_path, "r") as stream:
            nccl_comm_cfgs = yaml.safe_load(stream)

    rank_generator = RankGenerator(
        tp=tensor_model_parallel_size,
        ep=expert_model_parallel_size,
        dp=data_parallel_size,
        pp=pipeline_model_parallel_size,
        cp=context_parallel_size,
        order=order,
    )
    timeout = timedelta(minutes=distributed_timeout_minutes)

    # Build the data-parallel groups.
    global _DATA_PARALLEL_GROUP
    global _DATA_PARALLEL_GROUP_GLOO
    global _DATA_PARALLEL_GLOBAL_RANKS
    global _DATA_PARALLEL_GROUP_WITH_CP
    global _DATA_PARALLEL_GROUP_WITH_CP_GLOO
    global _DATA_PARALLEL_GLOBAL_RANKS_WITH_CP
    assert _DATA_PARALLEL_GROUP is None, 'data parallel group is already initialized'

    for ranks in rank_generator.get_ranks('dp'):
        group = torch.distributed.new_group(
            ranks, timeout=timeout, pg_options=get_nccl_options('dp', nccl_comm_cfgs)
        )
        group_gloo = torch.distributed.new_group(ranks, timeout=timeout, backend="gloo")
        if rank in ranks:
            _DATA_PARALLEL_GROUP = group
            _DATA_PARALLEL_GROUP_GLOO = group_gloo
            _DATA_PARALLEL_GLOBAL_RANKS = ranks
    for ranks_with_cp in rank_generator.get_ranks('dp-cp'):
        group_with_cp = torch.distributed.new_group(
            ranks_with_cp, timeout=timeout, pg_options=get_nccl_options('dp_cp', nccl_comm_cfgs)
        )
        group_with_cp_gloo = torch.distributed.new_group(
            ranks_with_cp, timeout=timeout, backend="gloo"
        )
        if rank in ranks_with_cp:
            _DATA_PARALLEL_GROUP_WITH_CP = group_with_cp
            _DATA_PARALLEL_GROUP_WITH_CP_GLOO = group_with_cp_gloo
            _DATA_PARALLEL_GLOBAL_RANKS_WITH_CP = ranks_with_cp

    # Apply SHARP to DP process groups
    if use_sharp:
        if rank == 0:
            print(
                "The number of process groups to use SHARP with depends on the type "
                "of the network switch. Nvidia QM1 switch supports SAHRP up to 8 "
                "process groups and QM2 supports up to 256 process groups. We apply "
                "SHARP to the communications of the data-parallel domain. If the "
                "number of data-parallel process groups is larger than the max "
                "process groups that the network switch supports, the communication "
                "will fall back to non-SHARP operators. To enable SHARP, "
                "`#SBATCH_NETWORK=sharp` should be set in the sbatch script."
            )
        torch.distributed.barrier(
            group=get_data_parallel_group(with_context_parallel=True),
            device_ids=[torch.cuda.current_device()],
        )
        # Set `NCCL_COLLNET_ENABLE=0` to restrict SHARP application to DP process groups
        os.environ["NCCL_COLLNET_ENABLE"] = "0"

    # Build the context-parallel groups.
    global _CONTEXT_PARALLEL_GROUP
    global _CONTEXT_PARALLEL_GLOBAL_RANKS
    assert _CONTEXT_PARALLEL_GROUP is None, 'context parallel group is already initialized'
    for ranks in rank_generator.get_ranks('cp'):
        group = torch.distributed.new_group(
            ranks, timeout=timeout, pg_options=get_nccl_options('cp', nccl_comm_cfgs)
        )
        if rank in ranks:
            _CONTEXT_PARALLEL_GROUP = group
            _CONTEXT_PARALLEL_GLOBAL_RANKS = ranks

    # Build the model-parallel groups.
    global _MODEL_PARALLEL_GROUP
    assert _MODEL_PARALLEL_GROUP is None, 'model parallel group is already initialized'
    for ranks in rank_generator.get_ranks('tp-pp'):
        group = torch.distributed.new_group(
            ranks, timeout=timeout, pg_options=get_nccl_options('mp', nccl_comm_cfgs)
        )
        if rank in ranks:
            _MODEL_PARALLEL_GROUP = group

    # Build the model-parallel groups with expert parallel
    global _MODEL_AND_EXPERT_PARALLEL_GROUP
    assert (
        _MODEL_AND_EXPERT_PARALLEL_GROUP is None
    ), 'model and expert parallel group is already initialized'
    for ranks in rank_generator.get_ranks('tp-ep-pp', independent_ep=True):
        group = torch.distributed.new_group(
            ranks, timeout=timeout, pg_options=get_nccl_options('mp_exp', nccl_comm_cfgs)
        )
        if rank in ranks:
            _MODEL_AND_EXPERT_PARALLEL_GROUP = group

    # Build the tensor model-parallel groups.
    global _TENSOR_MODEL_PARALLEL_GROUP
    global _TENSOR_MODEL_PARALLEL_GLOBAL_RANKS
    assert (
        _TENSOR_MODEL_PARALLEL_GROUP is None
    ), 'tensor model parallel group is already initialized'
    for ranks in rank_generator.get_ranks('tp'):
        group = torch.distributed.new_group(
            ranks, timeout=timeout, pg_options=get_nccl_options('tp', nccl_comm_cfgs)
        )
        if rank in ranks:
            _TENSOR_MODEL_PARALLEL_GROUP = group
            _TENSOR_MODEL_PARALLEL_GLOBAL_RANKS = ranks

    # Build the pipeline model-parallel groups and embedding groups
    # (first and last rank in each pipeline model-parallel group).
    global _PIPELINE_MODEL_PARALLEL_GROUP
    global _PIPELINE_GLOBAL_RANKS
    assert (
        _PIPELINE_MODEL_PARALLEL_GROUP is None
    ), 'pipeline model parallel group is already initialized'
    global _EMBEDDING_GROUP
    global _EMBEDDING_GLOBAL_RANKS
    assert _EMBEDDING_GROUP is None, 'embedding group is already initialized'
    global _POSITION_EMBEDDING_GROUP
    global _POSITION_EMBEDDING_GLOBAL_RANKS
    assert _POSITION_EMBEDDING_GROUP is None, 'position embedding group is already initialized'
    for ranks in rank_generator.get_ranks('pp'):
        group = torch.distributed.new_group(
            ranks, timeout=timeout, pg_options=get_nccl_options('pp', nccl_comm_cfgs)
        )
        if rank in ranks:
            _PIPELINE_MODEL_PARALLEL_GROUP = group
            _PIPELINE_GLOBAL_RANKS = ranks
        # Setup embedding group (to exchange gradients between
        # first and last stages).
        if len(ranks) > 1:
            embedding_ranks = [ranks[0], ranks[-1]]
            position_embedding_ranks = [ranks[0]]
            if pipeline_model_parallel_split_rank is not None:
                if ranks[pipeline_model_parallel_split_rank] not in embedding_ranks:
                    embedding_ranks = [
                        ranks[0],
                        ranks[pipeline_model_parallel_split_rank],
                        ranks[-1],
                    ]
                if ranks[pipeline_model_parallel_split_rank] not in position_embedding_ranks:
                    position_embedding_ranks = [ranks[0], ranks[pipeline_model_parallel_split_rank]]
        else:
            embedding_ranks = ranks
            position_embedding_ranks = ranks

        group = torch.distributed.new_group(
            embedding_ranks, timeout=timeout, pg_options=get_nccl_options('embd', nccl_comm_cfgs)
        )
        if rank in embedding_ranks:
            _EMBEDDING_GROUP = group
        if rank in ranks:
            _EMBEDDING_GLOBAL_RANKS = embedding_ranks

        group = torch.distributed.new_group(
            position_embedding_ranks,
            timeout=timeout,
            pg_options=get_nccl_options('embd', nccl_comm_cfgs),
        )
        if rank in position_embedding_ranks:
            _POSITION_EMBEDDING_GROUP = group
        if rank in ranks:
            _POSITION_EMBEDDING_GLOBAL_RANKS = position_embedding_ranks

    # Build the tensor + data parallel groups.
    global _TENSOR_AND_DATA_PARALLEL_GROUP
    global _TENSOR_AND_DATA_PARALLEL_GROUP_WITH_CP
    assert (
        _TENSOR_AND_DATA_PARALLEL_GROUP is None
    ), 'Tensor + data parallel group is already initialized'
    for ranks in rank_generator.get_ranks('tp-dp-cp'):
        group = torch.distributed.new_group(
            ranks, timeout=timeout, pg_options=get_nccl_options('tp_dp_cp', nccl_comm_cfgs)
        )
        if rank in ranks:
            _TENSOR_AND_DATA_PARALLEL_GROUP_WITH_CP = group
    for ranks in rank_generator.get_ranks('tp-dp'):
        group = torch.distributed.new_group(
            ranks, timeout=timeout, pg_options=get_nccl_options('tp_dp', nccl_comm_cfgs)
        )
        if rank in ranks:
            _TENSOR_AND_DATA_PARALLEL_GROUP = group

    # Build the tensor + expert parallel groups
    global _EXPERT_MODEL_PARALLEL_GROUP
    assert _EXPERT_MODEL_PARALLEL_GROUP is None, 'Expert parallel group is already initialized'
    global _TENSOR_AND_EXPERT_PARALLEL_GROUP
    assert (
        _TENSOR_AND_EXPERT_PARALLEL_GROUP is None
    ), 'Tensor + expert parallel group is already initialized'
    global _DATA_MODULO_EXPERT_PARALLEL_GROUP
    assert (
        _DATA_MODULO_EXPERT_PARALLEL_GROUP is None
    ), 'Data modulo expert group is already initialized'
    global _DATA_MODULO_EXPERT_PARALLEL_GROUP_GLOO

    for ranks in rank_generator.get_ranks('tp-ep', independent_ep=True):
        group = torch.distributed.new_group(
            ranks, timeout=timeout, pg_options=get_nccl_options('tp_exp', nccl_comm_cfgs)
        )
        if rank in ranks:
            _TENSOR_AND_EXPERT_PARALLEL_GROUP = group

    for ranks in rank_generator.get_ranks('ep', independent_ep=True):
        group = torch.distributed.new_group(
            ranks, pg_options=get_nccl_options('exp', nccl_comm_cfgs)
        )
        if rank in ranks:
            _EXPERT_MODEL_PARALLEL_GROUP = group

    for ranks in rank_generator.get_ranks('dp', independent_ep=True):
        group = torch.distributed.new_group(
            ranks, timeout=timeout, pg_options=get_nccl_options('dp_modulo_exp', nccl_comm_cfgs)
        )
        group_gloo = torch.distributed.new_group(ranks, backend="gloo")
        if rank in ranks:
            _DATA_MODULO_EXPERT_PARALLEL_GROUP = group
            _DATA_MODULO_EXPERT_PARALLEL_GROUP_GLOO = group_gloo

    # Initialize global memory buffer
    # This isn't really "parallel state" but there isn't another good place to
    # put this. If we end up with a more generic initialization of megatron-core
    # we could stick it there
    _set_global_memory_buffer()


def is_initialized():
    """Useful for code segments that may be accessed with or without mpu initialization"""
    return _DATA_PARALLEL_GROUP is not None


def is_unitialized() -> bool:
    """Check if parallel state has been initialized

    Deprecated. Use is_initialized instead.

    """
    warnings.warn(
        "is_unitialized is deprecated, use is_initialized instead", DeprecationWarning,
    )
    return not is_initialized()


def model_parallel_is_initialized():
    """Check if model and data parallel groups are initialized."""
    if (
        _TENSOR_MODEL_PARALLEL_GROUP is None
        or _PIPELINE_MODEL_PARALLEL_GROUP is None
        or _DATA_PARALLEL_GROUP is None
    ):
        return False
    return True


def get_model_parallel_group(with_expert_parallel=False):
    """Get the model parallel group the caller rank belongs to."""
    if with_expert_parallel:
        assert (
            _MODEL_AND_EXPERT_PARALLEL_GROUP is not None
        ), 'model parallel group is not initialized'
        return _MODEL_AND_EXPERT_PARALLEL_GROUP
    assert _MODEL_PARALLEL_GROUP is not None, 'model parallel group is not initialized'
    return _MODEL_PARALLEL_GROUP


def get_tensor_model_parallel_group(check_initialized=True):
    """Get the tensor model parallel group the caller rank belongs to."""
    if check_initialized:
        assert (
            _TENSOR_MODEL_PARALLEL_GROUP is not None
        ), 'tensor model parallel group is not initialized'
    return _TENSOR_MODEL_PARALLEL_GROUP


def get_pipeline_model_parallel_group():
    """Get the pipeline model parallel group the caller rank belongs to."""
    assert (
        _PIPELINE_MODEL_PARALLEL_GROUP is not None
    ), 'pipeline_model parallel group is not initialized'
    return _PIPELINE_MODEL_PARALLEL_GROUP


def get_data_parallel_group(with_context_parallel=False):
    """Get the data parallel group the caller rank belongs to."""
    if with_context_parallel:
        assert (
            _DATA_PARALLEL_GROUP_WITH_CP is not None
        ), 'data parallel group with context parallel combined is not initialized'
        return _DATA_PARALLEL_GROUP_WITH_CP
    else:
        assert _DATA_PARALLEL_GROUP is not None, 'data parallel group is not initialized'
        return _DATA_PARALLEL_GROUP


def get_data_parallel_group_gloo(with_context_parallel=False):
    """Get the data parallel group-gloo the caller rank belongs to."""
    if with_context_parallel:
        assert (
            _DATA_PARALLEL_GROUP_WITH_CP_GLOO is not None
        ), 'data parallel group-gloo with context parallel combined is not initialized'
        return _DATA_PARALLEL_GROUP_WITH_CP_GLOO
    else:
        assert _DATA_PARALLEL_GROUP_GLOO is not None, 'data parallel group-gloo is not initialized'
        return _DATA_PARALLEL_GROUP_GLOO


def get_context_parallel_group(check_initialized=True):
    """Get the context parallel group the caller rank belongs to."""
    if check_initialized:
        assert _CONTEXT_PARALLEL_GROUP is not None, 'context parallel group is not initialized'
    return _CONTEXT_PARALLEL_GROUP


def get_context_parallel_global_ranks(check_initialized=True):
    """Get all global ranks of the context parallel group that the caller rank belongs to."""
    if check_initialized:
        assert (
            _CONTEXT_PARALLEL_GLOBAL_RANKS is not None
        ), 'context parallel group is not initialized'
    return _CONTEXT_PARALLEL_GLOBAL_RANKS


def get_embedding_group():
    """Get the embedding group the caller rank belongs to."""
    assert _EMBEDDING_GROUP is not None, 'embedding group is not initialized'
    return _EMBEDDING_GROUP


def get_position_embedding_group():
    """Get the position embedding group the caller rank belongs to."""
    assert _POSITION_EMBEDDING_GROUP is not None, 'position embedding group is not initialized'
    return _POSITION_EMBEDDING_GROUP


def get_amax_reduction_group(with_context_parallel=False):
    """Get the FP8 amax reduction group the caller rank belongs to."""
    if with_context_parallel:
        assert (
            _TENSOR_AND_DATA_PARALLEL_GROUP_WITH_CP is not None
        ), 'FP8 amax reduction group is not initialized'
        return _TENSOR_AND_DATA_PARALLEL_GROUP_WITH_CP
    else:
        assert (
            _TENSOR_AND_DATA_PARALLEL_GROUP is not None
        ), 'FP8 amax reduction group is not initialized'
        return _TENSOR_AND_DATA_PARALLEL_GROUP


def get_tensor_and_data_parallel_group(with_context_parallel=False):
    """Get the tensor and data parallel group the caller rank belongs to."""
    if with_context_parallel:
        assert (
            _TENSOR_AND_DATA_PARALLEL_GROUP_WITH_CP is not None
        ), 'tensor and data parallel group is not initialized'
        return _TENSOR_AND_DATA_PARALLEL_GROUP_WITH_CP
    else:
        assert (
            _TENSOR_AND_DATA_PARALLEL_GROUP is not None
        ), 'tensor and data parallel group is not initialized'
        return _TENSOR_AND_DATA_PARALLEL_GROUP


def get_expert_model_parallel_group():
    assert (
        _EXPERT_MODEL_PARALLEL_GROUP is not None
    ), 'expert model parallel group is not initialized'
    return _EXPERT_MODEL_PARALLEL_GROUP


def get_tensor_and_expert_parallel_group():
    assert (
        _TENSOR_AND_EXPERT_PARALLEL_GROUP is not None
    ), 'tensor and expert parallel group is not initialized'
    return _TENSOR_AND_EXPERT_PARALLEL_GROUP


def get_data_modulo_expert_parallel_group():
    assert (
        _DATA_MODULO_EXPERT_PARALLEL_GROUP is not None
    ), 'data modulo expert parallel group is not initialized'
    return _DATA_MODULO_EXPERT_PARALLEL_GROUP


def get_data_modulo_expert_parallel_group_gloo():
    assert (
        _DATA_MODULO_EXPERT_PARALLEL_GROUP_GLOO is not None
    ), 'data modulo expert parallel group-gloo is not initialized'
    return _DATA_MODULO_EXPERT_PARALLEL_GROUP_GLOO


def set_expert_model_parallel_world_size(world_size):
    global _MPU_EXPERT_MODEL_PARALLEL_WORLD_SIZE
    _MPU_EXPERT_MODEL_PARALLEL_WORLD_SIZE = world_size


def set_tensor_model_parallel_world_size(world_size):
    """Set the tensor model parallel size"""
    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = world_size


def set_pipeline_model_parallel_world_size(world_size):
    """Set the pipeline model parallel size"""
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = world_size


def set_virtual_pipeline_model_parallel_world_size(world_size):
    """Set the pipeline model parallel size"""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = world_size


def get_tensor_model_parallel_world_size():
    """Return world size for the tensor model parallel group."""
    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    if _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE is not None:
        return _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    return torch.distributed.get_world_size(group=get_tensor_model_parallel_group())


def get_pipeline_model_parallel_world_size():
    """Return world size for the pipeline model parallel group."""
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    if _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE is not None:
        return _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    return torch.distributed.get_world_size(group=get_pipeline_model_parallel_group())


def set_expert_model_parallel_rank(rank):
    """Set expert model parallel rank."""
    global _MPU_EXPERT_MODEL_PARALLEL_RANK
    _MPU_EXPERT_MODEL_PARALLEL_RANK = rank


def set_tensor_model_parallel_rank(rank):
    """Set tensor model parallel rank."""
    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    _MPU_TENSOR_MODEL_PARALLEL_RANK = rank


def set_pipeline_model_parallel_rank(rank):
    """Set pipeline model parallel rank."""
    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    _MPU_PIPELINE_MODEL_PARALLEL_RANK = rank


def set_pipeline_model_parallel_split_rank(rank):
    """Set pipeline model parallel split rank."""
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    _PIPELINE_MODEL_PARALLEL_SPLIT_RANK = rank


def get_tensor_model_parallel_rank():
    """Return my rank for the tensor model parallel group."""
    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    if _MPU_TENSOR_MODEL_PARALLEL_RANK is not None:
        return _MPU_TENSOR_MODEL_PARALLEL_RANK
    return torch.distributed.get_rank(group=get_tensor_model_parallel_group())


def get_pipeline_model_parallel_rank():
    """Return my rank for the pipeline model parallel group."""
    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    if _MPU_PIPELINE_MODEL_PARALLEL_RANK is not None:
        return _MPU_PIPELINE_MODEL_PARALLEL_RANK
    return torch.distributed.get_rank(group=get_pipeline_model_parallel_group())


def get_pipeline_model_parallel_split_rank():
    """Return pipeline model parallel split rank."""
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    return _PIPELINE_MODEL_PARALLEL_SPLIT_RANK


def is_pipeline_first_stage(ignore_virtual=False):
    """Return True if in the first pipeline model-parallel stage, False otherwise."""
    if not ignore_virtual:
        if (
            get_virtual_pipeline_model_parallel_world_size() is not None
            and get_virtual_pipeline_model_parallel_rank() != 0
        ):
            return False
    return get_pipeline_model_parallel_rank() == 0


def is_pipeline_last_stage(ignore_virtual=False):
    """Return True if in the last pipeline model-parallel stage, False otherwise."""
    if not ignore_virtual:
        virtual_pipeline_model_parallel_world_size = (
            get_virtual_pipeline_model_parallel_world_size()
        )
        if virtual_pipeline_model_parallel_world_size is not None and get_virtual_pipeline_model_parallel_rank() != (
            virtual_pipeline_model_parallel_world_size - 1
        ):
            return False
    return get_pipeline_model_parallel_rank() == (get_pipeline_model_parallel_world_size() - 1)


def is_rank_in_embedding_group(ignore_virtual=False):
    """Return true if current rank is in embedding group, False otherwise."""
    rank = torch.distributed.get_rank()
    global _EMBEDDING_GLOBAL_RANKS
    if ignore_virtual:
        return rank in _EMBEDDING_GLOBAL_RANKS
    if rank in _EMBEDDING_GLOBAL_RANKS:
        if rank == _EMBEDDING_GLOBAL_RANKS[0]:
            return is_pipeline_first_stage(ignore_virtual=False)
        elif rank == _EMBEDDING_GLOBAL_RANKS[-1]:
            return is_pipeline_last_stage(ignore_virtual=False)
        else:
            return True
    return False


def is_rank_in_position_embedding_group():
    """Return true if current rank is in position embedding group, False otherwise."""
    rank = torch.distributed.get_rank()
    global _POSITION_EMBEDDING_GLOBAL_RANKS
    return rank in _POSITION_EMBEDDING_GLOBAL_RANKS


def is_pipeline_stage_before_split(rank=None):
    """Return True if pipeline stage executes encoder block for a model
    with both encoder and decoder."""
    if get_pipeline_model_parallel_world_size() == 1:
        return True
    if rank is None:
        rank = get_pipeline_model_parallel_rank()
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    if _PIPELINE_MODEL_PARALLEL_SPLIT_RANK is None:
        return True
    if rank < _PIPELINE_MODEL_PARALLEL_SPLIT_RANK:
        return True
    return False


def is_pipeline_stage_after_split(rank=None):
    """Return True if pipeline stage executes decoder block for a model
    with both encoder and decoder."""
    if get_pipeline_model_parallel_world_size() == 1:
        return True
    if rank is None:
        rank = get_pipeline_model_parallel_rank()
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    if _PIPELINE_MODEL_PARALLEL_SPLIT_RANK is None:
        return True
    if rank >= _PIPELINE_MODEL_PARALLEL_SPLIT_RANK:
        return True
    return False


def is_pipeline_stage_at_split():
    """Return true if pipeline stage executes decoder block and next
    stage executes encoder block for a model with both encoder and
    decoder."""
    rank = get_pipeline_model_parallel_rank()
    return is_pipeline_stage_before_split(rank) and is_pipeline_stage_after_split(rank + 1)


def get_virtual_pipeline_model_parallel_rank():
    """Return the virtual pipeline-parallel rank."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    return _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK


def set_virtual_pipeline_model_parallel_rank(rank):
    """Set the virtual pipeline-parallel rank."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = rank


def get_virtual_pipeline_model_parallel_world_size():
    """Return the virtual pipeline-parallel world size."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    return _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE


def get_tensor_model_parallel_src_rank():
    """Calculate the global rank corresponding to the first local rank
    in the tensor model parallel group."""
    assert (
        _TENSOR_MODEL_PARALLEL_GLOBAL_RANKS is not None
    ), "Tensor model parallel group is not initialized"
    return _TENSOR_MODEL_PARALLEL_GLOBAL_RANKS[0]


def get_data_parallel_src_rank(with_context_parallel=False):
    """Calculate the global rank corresponding to the first local rank
    in the data parallel group."""
    if with_context_parallel:
        assert (
            _DATA_PARALLEL_GLOBAL_RANKS_WITH_CP is not None
        ), "Data parallel group with context parallel combined is not initialized"
        return _DATA_PARALLEL_GLOBAL_RANKS_WITH_CP[0]
    else:
        assert _DATA_PARALLEL_GLOBAL_RANKS is not None, "Data parallel group is not initialized"
        return _DATA_PARALLEL_GLOBAL_RANKS[0]


def get_pipeline_model_parallel_first_rank():
    """Return the global rank of the first process in the pipeline for the
    current tensor parallel group"""
    assert _PIPELINE_GLOBAL_RANKS is not None, "Pipeline parallel group is not initialized"
    return _PIPELINE_GLOBAL_RANKS[0]


def get_pipeline_model_parallel_last_rank():
    """Return the global rank of the last process in the pipeline for the
    current tensor parallel group"""
    assert _PIPELINE_GLOBAL_RANKS is not None, "Pipeline parallel group is not initialized"
    last_rank_local = get_pipeline_model_parallel_world_size() - 1
    return _PIPELINE_GLOBAL_RANKS[last_rank_local]


def get_pipeline_model_parallel_next_rank():
    """Return the global rank that follows the caller in the pipeline"""
    assert _PIPELINE_GLOBAL_RANKS is not None, "Pipeline parallel group is not initialized"
    rank_in_pipeline = get_pipeline_model_parallel_rank()
    world_size = get_pipeline_model_parallel_world_size()
    return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline + 1) % world_size]


def get_pipeline_model_parallel_prev_rank():
    """Return the global rank that preceeds the caller in the pipeline"""
    assert _PIPELINE_GLOBAL_RANKS is not None, "Pipeline parallel group is not initialized"
    rank_in_pipeline = get_pipeline_model_parallel_rank()
    world_size = get_pipeline_model_parallel_world_size()
    return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline - 1) % world_size]


def get_data_parallel_world_size(with_context_parallel=False):
    """Return world size for the data parallel group."""
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        return torch.distributed.get_world_size(
            group=get_data_parallel_group(with_context_parallel=with_context_parallel)
        )
    else:
        return 0


def get_data_parallel_rank(with_context_parallel=False):
    """Return my rank for the data parallel group."""
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        return torch.distributed.get_rank(
            group=get_data_parallel_group(with_context_parallel=with_context_parallel)
        )
    else:
        return 0


def get_context_parallel_world_size():
    """Return world size for the context parallel group."""
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        return torch.distributed.get_world_size(group=get_context_parallel_group())
    else:
        return 0


def get_context_parallel_rank():
    """Return my rank for the context parallel group."""
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        return torch.distributed.get_rank(group=get_context_parallel_group())
    else:
        return 0


def get_expert_model_parallel_world_size():
    """Return world size for the expert model parallel group"""
    if _MPU_EXPERT_MODEL_PARALLEL_WORLD_SIZE:
        return _MPU_EXPERT_MODEL_PARALLEL_WORLD_SIZE
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        tensor_and_expert_parallel_world_size = torch.distributed.get_world_size(
            group=get_tensor_and_expert_parallel_group()
        )
        return tensor_and_expert_parallel_world_size // get_tensor_model_parallel_world_size()
    else:
        return 0


def get_tensor_and_expert_parallel_world_size():
    """Return world size for the expert model parallel group times model parallel group.
       Currently, each expert will also be distributed across TP group by default.
    """
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        tensor_and_expert_parallel_world_size = torch.distributed.get_world_size(
            group=get_tensor_and_expert_parallel_group()
        )
        return tensor_and_expert_parallel_world_size
    else:
        return 0


def get_expert_model_parallel_rank():
    """Return my rank for the expert parallel group"""
    if _MPU_EXPERT_MODEL_PARALLEL_RANK:
        return _MPU_EXPERT_MODEL_PARALLEL_RANK
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        tensor_and_expert_parallel_rank = torch.distributed.get_rank(
            group=get_tensor_and_expert_parallel_group()
        )
        return tensor_and_expert_parallel_rank // get_tensor_model_parallel_world_size()
    else:
        return 0


def get_data_modulo_expert_parallel_rank():
    """Return my rank for the context parallel group."""
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        return torch.distributed.get_rank(group=get_data_modulo_expert_parallel_group())
    else:
        return 0


def get_tensor_and_expert_parallel_rank():
    """Return my rank for the tensor and expert parallel group"""
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        return torch.distributed.get_rank(group=get_tensor_and_expert_parallel_group())
    else:
        return 0


def _set_global_memory_buffer():
    """Initialize global buffer"""
    global _GLOBAL_MEMORY_BUFFER
    assert _GLOBAL_MEMORY_BUFFER is None, 'global memory buffer is already initialized'
    _GLOBAL_MEMORY_BUFFER = GlobalMemoryBuffer()


def get_global_memory_buffer():
    """Return the global GlobalMemoryBuffer object"""
    assert _GLOBAL_MEMORY_BUFFER is not None, 'global memory buffer is not initialized'
    return _GLOBAL_MEMORY_BUFFER


def destroy_global_memory_buffer():
    """Sets the global memory buffer to None"""
    global _GLOBAL_MEMORY_BUFFER
    _GLOBAL_MEMORY_BUFFER = None


def destroy_model_parallel():
    """Set the groups to none."""
    global _MODEL_PARALLEL_GROUP
    _MODEL_PARALLEL_GROUP = None
    global _MODEL_AND_EXPERT_PARALLEL_GROUP
    _MODEL_AND_EXPERT_PARALLEL_GROUP = None
    global _TENSOR_MODEL_PARALLEL_GROUP
    _TENSOR_MODEL_PARALLEL_GROUP = None
    global _PIPELINE_MODEL_PARALLEL_GROUP
    _PIPELINE_MODEL_PARALLEL_GROUP = None
    global _DATA_PARALLEL_GROUP
    _DATA_PARALLEL_GROUP = None
    global _DATA_PARALLEL_GROUP_WITH_CP
    _DATA_PARALLEL_GROUP_WITH_CP = None
    global _CONTEXT_PARALLEL_GROUP
    _CONTEXT_PARALLEL_GROUP = None
    global _CONTEXT_PARALLEL_GLOBAL_RANKS
    _CONTEXT_PARALLEL_GLOBAL_RANKS = None
    global _EMBEDDING_GROUP
    _EMBEDDING_GROUP = None
    global _POSITION_EMBEDDING_GROUP
    _POSITION_EMBEDDING_GROUP = None
    global _TENSOR_AND_DATA_PARALLEL_GROUP
    _TENSOR_AND_DATA_PARALLEL_GROUP = None
    global _TENSOR_AND_DATA_PARALLEL_GROUP_WITH_CP
    _TENSOR_AND_DATA_PARALLEL_GROUP_WITH_CP = None
    global _EXPERT_MODEL_PARALLEL_GROUP
    _EXPERT_MODEL_PARALLEL_GROUP = None
    global _TENSOR_AND_EXPERT_PARALLEL_GROUP
    _TENSOR_AND_EXPERT_PARALLEL_GROUP = None
    global _DATA_MODULO_EXPERT_PARALLEL_GROUP
    _DATA_MODULO_EXPERT_PARALLEL_GROUP = None
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = None
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = None
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    _MPU_TENSOR_MODEL_PARALLEL_RANK = None
    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    _MPU_PIPELINE_MODEL_PARALLEL_RANK = None
    global _GLOBAL_MEMORY_BUFFER
    _GLOBAL_MEMORY_BUFFER = None
    global _MPU_EXPERT_MODEL_PARALLEL_WORLD_SIZE
    _MPU_EXPERT_MODEL_PARALLEL_WORLD_SIZE = None
    global _MPU_EXPERT_MODEL_PARALLEL_RANK
    _MPU_EXPERT_MODEL_PARALLEL_RANK = None