serialization.py 20.9 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
# Copyright (c) 2022-2023, NVIDIA CORPORATION.  All rights reserved.

""" Entrypoints for saving and loading the distributed checkpoints.

Functions `load` and `save` are equivalents of `torch.load` and `torch.save`
but expect torch.Tensors to be wrapped with classes from the `mapping module`.
Additionally, `load` expects the sharded state dict argument as a guidance for loading the sharded tensors.
"""

import logging
import os
from collections import Counter, defaultdict
from itertools import chain
from pathlib import Path
from typing import Iterable, List, Optional, Tuple, Union

import numpy as np
import torch

from .core import CheckpointingConfig, maybe_load_config, save_config
from .dict_utils import (
    dict_list_map_inplace,
    diff,
    extract_matching_values,
    map_reduce,
    merge,
    nested_values,
)
from .mapping import (
    CheckpointingException,
    ShardedObject,
    ShardedStateDict,
    ShardedTensor,
    ShardedTensorFactory,
    StateDict,
    apply_factories,
    apply_factory_merges,
    is_main_replica,
)
from .strategies.async_utils import AsyncRequest
from .strategies.base import (
    AsyncSaveShardedStrategy,
    LoadCommonStrategy,
    LoadShardedStrategy,
    SaveCommonStrategy,
    SaveShardedStrategy,
    StrategyAction,
    get_default_strategy,
)
from .utils import (
    extract_nonpersistent,
    extract_sharded_base,
    extract_sharded_tensors,
    extract_sharded_tensors_or_nonpersistent,
)

COMMON_STATE_FNAME = 'common.pt'

logger = logging.getLogger(__name__)


def load(
    sharded_state_dict: ShardedStateDict,
    checkpoint_dir: str,
    sharded_strategy: Union[LoadShardedStrategy, Tuple[str, int], None] = None,
    common_strategy: Union[LoadCommonStrategy, Tuple[str, int], None] = None,
    validate_access_integrity: bool = True,
) -> StateDict:
    """Loading entrypoint.

    In the steps below, the following verbs refer to corresponding objects:
    - load = load from checkpoint
    - extract = extract from sharded_state_dict
    - add = add to the final state dict
    Steps:
    1. Load common state dict and form the base of the result state dict
    2. Apply factories to sharded_state_dict
    3. Extract LocalNonPersistentObject and add
    4. (optional) Extract ShardedObjects, load and add
    5. Extract ShardedBase, load, apply factory merges and add

    Args:
        sharded_state_dict (ShardedStateDict): state dict of the existing model
            populated with ShardedTensors. Used as a mapping to determine which
            parts of global tensors stored in the checkpoint should be loaded.
        checkpoint_dir (str): directory with the checkpoint
        sharded_strategy (LoadShardedStrategy, Tuple[str, int], optional): configures loading behavior for sharded tensors
        common_strategy (LoadCommonStrategy, Tuple[str, int], optional): configures loading behavior for common data
        validate_access_integrity (bool default = True): checks if each tensor shard is accessed
            exactly once (as main replica) by some process
    """
    if common_strategy is not None:
        raise NotImplementedError('The only supported common strategy is torch')

    sharded_strategy = _verify_checkpoint_and_load_strategy(checkpoint_dir, sharded_strategy)

    checkpoint_dir = Path(checkpoint_dir)
    common_state_dict = load_common_state_dict(checkpoint_dir)
    if not sharded_state_dict:
        return common_state_dict

    # Create a copy of sharded_state_dict as the passed in state dict may have
    # references that prevent tensors from being deallocated
    sharded_state_dict, _ = extract_matching_values(sharded_state_dict, lambda x: True)

    sh_ten_factories, _ = extract_matching_values(
        sharded_state_dict,
        lambda x: isinstance(x, ShardedTensorFactory),
        return_lists_as_dicts=True,
    )
    apply_factories(sharded_state_dict)
    # Data inside sh_ten_factories no longer needed so delete them to reduce memory usage
    def unlink_data(x):
        x.data = None
        return x

    dict_list_map_inplace(unlink_data, sh_ten_factories)
    # Non-persistent objects
    nonpersistent_state_dict, sharded_state_dict = extract_nonpersistent(sharded_state_dict)
    dict_list_map_inplace(lambda o: o.unwrap(), nonpersistent_state_dict)
    merge(common_state_dict, nonpersistent_state_dict)

    # Sharded base
    if not sharded_strategy.can_handle_sharded_objects:
        # TODO: implement is a part of common strategy
        sharded_objects, sharded_state_dict = load_sharded_objects(
            sharded_state_dict, checkpoint_dir
        )
        merge(common_state_dict, sharded_objects)
    sharded_state_dict, _ = extract_sharded_base(sharded_state_dict)

    if validate_access_integrity:
        validate_sharding_integrity(nested_values(sharded_state_dict))

    loaded_state_dict = sharded_strategy.load(sharded_state_dict, checkpoint_dir)

    loaded_state_dict = apply_factory_merges(loaded_state_dict, sh_ten_factories)

    merge(common_state_dict, loaded_state_dict)
    return common_state_dict


def _verify_checkpoint_and_load_strategy(
    checkpoint_dir: str, sharded_strategy: Union[LoadShardedStrategy, Tuple[str, int], None] = None,
) -> LoadShardedStrategy:
    """ Verifies if checkpoint metadata exists and matches given strategy.

    Args:
        checkpoint_dir (str): checkpoint directory
        sharded_strategy (LoadShardedStrategy, Tuple[str, int], optional): load strategy to be verified
            if compatible with the checkpoint content. If None, the default load strategy
            for the checkpoint backend will be returned.
    """
    if not Path(checkpoint_dir).exists():
        raise CheckpointingException(f'Checkpoint directory {checkpoint_dir} does not exist')

    saved_config = maybe_load_config(checkpoint_dir)
    if saved_config is None:
        raise CheckpointingException(f'{checkpoint_dir} is not a distributed checkpoint')

    if sharded_strategy is None:
        sharded_strategy = get_default_strategy(
            StrategyAction.LOAD_SHARDED,
            saved_config.sharded_backend,
            saved_config.sharded_backend_version,
        )
    elif isinstance(sharded_strategy, tuple):
        sharded_strategy = get_default_strategy(StrategyAction.LOAD_SHARDED, *sharded_strategy)

    # TODO: implement consistency checks here
    return sharded_strategy


# TODO: implement it as common torch strategy
def load_common_state_dict(checkpoint_dir: Path) -> StateDict:
    """ Load common (non-sharded) objects state dict from the checkpoint.

    Args:
        checkpoint_dir (Path): checkpoint directory

    Returns:
        StateDict: state dict with non-sharded objects from the checkpoint
    """
    load_path = Path(checkpoint_dir) / COMMON_STATE_FNAME
    try:
        return torch.load(load_path, map_location='cpu')
    except FileNotFoundError as e:
        err_msg = f'Common file {load_path} does not exist'
        ckpt_files = [f.name for f in checkpoint_dir.iterdir()]
        logger.debug(f'{err_msg}. Checkpoint directory content: {ckpt_files}')
        raise CheckpointingException(err_msg) from e


def load_sharded_objects(sharded_state_dict: ShardedStateDict, checkpoint_dir: Path):
    """ Replaces all ShardedObject from a given state dict with values loaded from the checkpoint.

    Args:
        sharded_state_dict (ShardedStateDict): sharded state dict defining what objects should be loaded.
        checkpoint_dir (Path): checkpoint directory

    Returns:
        None: state dict is modified in place
    """
    sharded_objects, sharded_state_dict = extract_matching_values(
        sharded_state_dict, lambda v: isinstance(v, ShardedObject)
    )

    def load_sharded_object(sh_obj: ShardedObject):
        sh_obj.data = None
        load_path = (checkpoint_dir / sh_obj.unique_key).with_suffix('.pt')
        try:
            loaded_obj = torch.load(load_path)
        except FileNotFoundError as e:
            err_msg = f'Object shard {load_path} not found'
            obj_subdir = checkpoint_dir / sh_obj.key
            if obj_subdir.exists():
                obj_files = [f.name for f in obj_subdir.iterdir()]
                logger.debug(f'{err_msg}. Object {sh_obj.key} directory content: {obj_files}')
            else:
                ckpt_files = [f.name for f in checkpoint_dir.iterdir()]
                logger.debug(
                    f'{err_msg}. Object {sh_obj.key} directory does not exist. Checkpoint directory content: {ckpt_files}'
                )
            raise CheckpointingException(err_msg) from e
        return loaded_obj

    return dict_list_map_inplace(load_sharded_object, sharded_objects), sharded_state_dict


def load_tensors_metadata(
    checkpoint_dir: str, sharded_strategy: Union[LoadShardedStrategy, None] = None
) -> ShardedStateDict:
    """Load tensors metadata from the checkpoint.

    Returns a dictionary similar to a sharded state dict, but note that
    the dictionary keys are simply ShardedTensor keys (contrary to the
    actual sharded state dicts where keys correspond to state dict keys).

    Dict values are ShardedTensors without any sharding (so, the only useful
    information is tensors global shape and dtype).

    Concrete implementation depends on the loading strategy. If no strategy is
    given, a default for a given backend is used.
    """
    sharded_strategy = _verify_checkpoint_and_load_strategy(checkpoint_dir, sharded_strategy)
    return sharded_strategy.load_tensors_metadata(Path(checkpoint_dir))


def load_plain_tensors(checkpoint_dir: str):
    """Load checkpoint tensors without any sharding.

    NOTE: common state dict is NOT included."""
    sharded_state_dict = load_tensors_metadata(checkpoint_dir)
    # Don't validate integrity because shards will be overlapped
    # if world_size > 1 (all processes load whole tensors)
    return load(sharded_state_dict, checkpoint_dir, validate_access_integrity=False)


def save(
    sharded_state_dict: ShardedStateDict,
    checkpoint_dir: str,
    sharded_strategy: Union[SaveShardedStrategy, Tuple[str, int], None] = None,
    common_strategy: Union[SaveCommonStrategy, Tuple[str, int], None] = None,
    validate_access_integrity: bool = True,
    async_sharded_save: bool = False,
) -> Optional[AsyncRequest]:
    """Saving entrypoint.

    Extracts ShardedTensors from the given state dict. Rank 0 saves the
    "regular" part of the checkpoint to common torch file.
    The ShardedTensors are saved according to a strategy specified by the
    config.

    Steps:
    1. Apply factories
    2. Extract and discard LocalNonPersistentObject
    3. Extract all ShardedBase object
    4. Save all other objects to common.pt
    5. (optional) Extract and save ShardedObjects
    6. Save all ShardedBase objects
    7. Write metadata.json file with backend and version metadata.

    Step (6) can be performed asynchronously (see `async_sharded_save`), in this
    case the actual save is embodied in the returned async request and can be
    scheduled by the external caller. For async request, step (7) is added as
    one of the finalization functions, so that metadata.json is written only
    if the checkpoint is complete.

    Args:
        sharded_state_dict (ShardedStateDict): state dict of the populated with
            ShardedTensors. Used as a mapping to determine how local tensors
            should be saved as global tensors in the checkpoint.
        checkpoint_dir (str): directory to save the checkpoint to
        sharded_strategy (SaveShardedStrategy, Tuple[str, int], optional): configures sharded tensors saving behavior and backend
        common_strategy (SaveCommonStrategy, Tuple[str, int], optional): configures common data saving behavior and backend
        validate_access_integrity (bool default = True): checks if each tensor shard is accessed
            exactly once (as main replica) by some process
        async_sharded_save (bool, optional): if True, for the sharded state dict part
            an async save implementation will be called, with the AsyncRequest
            being returned to the caller. Note that it is the caller responsibility to
            actually schedule the async save. Defaults to False.

    Returns:
        AsyncRequest (optional): if `async_sharded_save` is True, returns
            async request that should be scheduled by the caller of this function.
            None otherwise.
    """
    checkpoint_dir = Path(checkpoint_dir)

    if torch.distributed.get_rank() == 0:
        if not checkpoint_dir.exists():
            raise CheckpointingException(
                f'Checkpoint destination directory does not exist: {checkpoint_dir}'
            )

        if next(checkpoint_dir.iterdir(), None) is not None:
            raise CheckpointingException(
                f'Checkpoint destination directory ({checkpoint_dir}) is not empty'
            )

    if common_strategy is not None:
        raise NotImplementedError('The only supported common strategy is torch')

    if sharded_strategy is None:
        sharded_strategy = get_default_save_sharded_strategy()
    if not isinstance(sharded_strategy, SaveShardedStrategy):
        assert isinstance(sharded_strategy, tuple), type(sharded_strategy)
        sharded_strategy = get_default_strategy(StrategyAction.SAVE_SHARDED, *sharded_strategy)

    apply_factories(sharded_state_dict)
    _, sharded_state_dict = extract_nonpersistent(sharded_state_dict)
    sharded_state_dict, state_dict = extract_sharded_base(sharded_state_dict)
    _save_common_dict(state_dict, checkpoint_dir, True)

    if validate_access_integrity:
        validate_sharding_integrity(list(nested_values(sharded_state_dict)))

    if not sharded_strategy.can_handle_sharded_objects:
        # TODO: implement is a part of common strategy
        sharded_state_dict = _extract_and_save_sharded_objects(
            sharded_state_dict, checkpoint_dir, validate_access_integrity
        )

    def metadata_finalize_fn():
        if torch.distributed.get_rank() == 0:
            save_config(
                CheckpointingConfig(sharded_strategy.backend, sharded_strategy.version),
                checkpoint_dir,
            )
        torch.distributed.barrier()

    if not async_sharded_save:
        sharded_strategy.save(sharded_state_dict, checkpoint_dir)
        metadata_finalize_fn()
        return

    if not isinstance(sharded_strategy, AsyncSaveShardedStrategy):
        raise CheckpointingException(
            f'Cannot apply async_save to non-async strategy {sharded_strategy}'
        )
    async_request = sharded_strategy.async_save(sharded_state_dict, checkpoint_dir)
    async_request.finalize_fns.append(metadata_finalize_fn)
    return async_request


def get_default_save_sharded_strategy(
    backend: str = 'torch_dist', version: int = 1
) -> SaveShardedStrategy:
    return get_default_strategy(StrategyAction.SAVE_SHARDED, backend, version)


def get_default_load_sharded_strategy(checkpoint_dir: str) -> LoadShardedStrategy:
    return _verify_checkpoint_and_load_strategy(checkpoint_dir)


# TODO: implement it as common torch strategy
def _save_common_dict(
    state_dict: StateDict, checkpoint_dir: Path, validate_consistency: bool = False
):
    if torch.distributed.get_rank() == 0:
        torch.save(state_dict, checkpoint_dir / COMMON_STATE_FNAME)
    if validate_consistency:
        # TODO: implement checking consistency with rank 0 common dict on other ranks
        pass
        # torch.distributed.barrier()
        # if not torch.distributed.get_rank() == 0:
        #     rank_0_state_dict = torch.load(checkpoint_dir / COMMON_STATE_FNAME)
        #     print(diff(common_state_dict, rank_0_state_dict))


def _extract_and_save_sharded_objects(
    state_dict: StateDict, checkpoint_dir: Path, validate_consistency: bool = False
):
    sharded_objects, state_dict = extract_matching_values(
        state_dict, lambda v: isinstance(v, ShardedObject)
    )
    sharded_objects = list(nested_values(sharded_objects))
    for sh_obj in sharded_objects:
        if is_main_replica(sh_obj.replica_id):
            save_path = (checkpoint_dir / sh_obj.unique_key).with_suffix('.pt')
            os.makedirs(save_path.parent, exist_ok=True)
            torch.save(sh_obj.data, save_path)
    return state_dict


def validate_sharding_integrity(sharded_tensors: Iterable[ShardedTensor]):
    """ Validate if the ShardedTensors from multiple processes define correct sharding of a global tensor.

    Local ShardedTensors metadata is exchanged with `torch.distributed.all_gather_object`
    and then process with global rank 0 checks if main replicas of the shards:
    - cover the whole global tensors
    - don't overlap

    Args:
        sharded_tensors (Iterable[ShardedTensor]): sharded tensors local to this process

    Returns:
        None

    Raises:
        CheckpointingException for invalid access pattern
    """
    sharding = [ten.without_data() for ten in sharded_tensors]
    all_sharding = [None] * torch.distributed.get_world_size()
    torch.distributed.all_gather_object(all_sharding, sharding)
    if torch.distributed.get_rank() != 0:
        return

    key_shardings = defaultdict(list)
    for rank, rank_shardings in enumerate(all_sharding):
        for sharding in rank_shardings:
            key_shardings[sharding.key].append((rank, sharding))
    for key, shardings in key_shardings.items():
        if isinstance(shardings[0][1], ShardedObject):
            _validate_objects_for_key(shardings)
        else:
            _validate_sharding_for_key(shardings)


def _validate_sharding_for_key(rank_sharding: List[Tuple[int, ShardedTensor]]):
    some_rank_shard = rank_sharding[0][1]
    global_shape = some_rank_shard.global_shape
    local_shape = some_rank_shard.local_shape
    dtype = some_rank_shard.dtype
    has_flattened_range = some_rank_shard.flattened_range is not None
    for rank, sharding in rank_sharding:
        assert sharding.dtype == dtype, (sharding.dtype, dtype, some_rank_shard)
        assert sharding.global_shape == global_shape, (
            sharding.global_shape,
            global_shape,
            some_rank_shard,
        )
        assert sharding.local_shape == local_shape, (
            sharding.local_shape,
            local_shape,
            some_rank_shard,
        )
        assert (sharding.flattened_range is not None) == has_flattened_range, (
            (sharding.flattened_range is not None),
            has_flattened_range,
            some_rank_shard,
        )

    shard_access_cnt = _compute_shards_access(rank_sharding)
    if has_flattened_range:
        map_reduce(
            rank_sharding,
            lambda x: x[1].global_offset,
            lambda x: x[1],
            _validate_sharding_for_key_flattened,
        )
    else:
        if not torch.all(shard_access_cnt == 1):
            logger.error(f'Invalid access pattern for {rank_sharding[0][1]}: {shard_access_cnt}')
            raise CheckpointingException(f'Invalid access pattern for {rank_sharding[0][1]}')


def _compute_shards_access(rank_sharding):
    shard_access_cnt = torch.zeros(
        rank_sharding[0][1].axis_fragmentations, dtype=torch.int, device='cpu'
    )
    for rank, sharding in rank_sharding:
        if is_main_replica(sharding.replica_id):
            shard_access_cnt[sharding.local_chunk_offset_in_global()] += 1
        # TODO: consider validating different replicas too
    return shard_access_cnt


def _validate_sharding_for_key_flattened(tensors_by_shard):
    all_slices = []
    local_shape = tensors_by_shard[0].local_shape
    for sharding in tensors_by_shard:
        assert sharding.local_shape == local_shape
        sharding: ShardedTensor
        if not is_main_replica(sharding.replica_id):
            # TODO: this checks only saving (and loading replica_id=0) consistency
            continue

        all_slices.append((sharding.flattened_range.start, sharding.flattened_range.stop))

    starts, stops = map(np.asarray, zip(*sorted(all_slices)))
    if (
        starts[0] != 0
        or stops[-1] != np.product(local_shape)
        or not np.all(starts[1:] == stops[:-1])
    ):
        logger.error(
            f'Flattened ranges dont cover the whole shard {tensors_by_shard[0]}. Ranges: {(starts, stops)}'
        )
        raise CheckpointingException(
            f'Flattened ranges dont cover the whole shard {tensors_by_shard[0]}'
        )


def _validate_objects_for_key(sharded_objects: List[ShardedObject]):
    """ Ensure uniqueness of saved objects. """
    unique_keys = [
        sh_obj.unique_key for _, sh_obj in sharded_objects if is_main_replica(sh_obj.replica_id)
    ]
    if len(unique_keys) != len(set(unique_keys)):
        duplicates = {k: cnt for k, cnt in Counter(unique_keys).items() if cnt > 1}
        logger.error(f'Duplicate ShardedObject keys and counts: {duplicates}')
        raise CheckpointingException(f'Duplicate ShardedObject keys: {list(duplicates.keys())}')
    expected_shard_num = np.prod(sharded_objects[0][1].global_shape)
    if len(unique_keys) != expected_shard_num:
        err_msg = f'Invalid access pattern: {expected_shard_num - len(unique_keys)} ShardedObject are missing.'
        logger.error(f'{err_msg} Existing shards: {unique_keys}')
        raise CheckpointingException(err_msg)