mapping.py 19.7 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
# Copyright (c) 2022-2023, NVIDIA CORPORATION.  All rights reserved.

""" Core library classes for representing sharding of tensors and objects.

The main expected usage is wrapping torch.Tensors in state dicts with
ShardedTensor class (mostly with the ShardedTensor.from_rank_offsets classmethod).
"""

import logging
from abc import ABC, abstractmethod
from dataclasses import dataclass, replace
from itertools import chain
from typing import Any, Callable, Dict, Optional, Tuple, Union

import numpy as np
import torch

from .core import CheckpointingException
from .dict_utils import dict_list_map_inplace, dict_list_map_outplace

logger = logging.getLogger(__name__)

# These type definitions are just hints to differentiate a plain model state
#  dict (StateDict) from a state dict with tensors replaced with ShardedTensors
#  (ShardedStateDict).
StateDict = Dict[str, Any]
ShardedStateDict = Dict[str, Any]
ReplicaId = Union[int, Tuple[int, ...]]


class ShardedBase(ABC):
    key: str
    data: object
    replica_id: ReplicaId

    @abstractmethod
    def validate_metadata_integrity(self):
        """Codifies the constraints on metadata attributes."""


@dataclass
class ShardedTensor(ShardedBase):
    """Represents a mapping between a local tensor and a global tensor.

    Global tensor is assumed to consist of many local tensors distributed
    between different processes.

    Args:
        key: unique identifier of a global tensor
        data: local tensor data. Can be None only for consistency validation
        dtype: tensor dtype
        local_shape: local tensor shape
        global_shape: global tensor shape
        global_offset: offset of a local tensor in a global tensor, specified in number of tensor elements
        axis_fragmentations: global tensor fragmentation of each axis
        replica_id: indicates given local tensor's replication wrt. local tensors in different processes
        prepend_axis_num: number of axes prepended to the local tensor to reflect global tensor shape. The behavior is similar to unsqueezing the local tensor.
        allow_shape_mismatch: if True, during loading, the global shape of a stored tensor does not have to match the expected global shape. Useful for representing tensors with flexible shape, e.g. padded.
        flattened_range: specifies a slice that should be applied to a flattened tensor with `local_shape` in order to get the tensor stored as `data`
    """

    key: str
    data: Optional[torch.Tensor]
    dtype: torch.dtype
    local_shape: Tuple[int, ...]
    global_shape: Tuple[int, ...]
    global_offset: Tuple[int, ...]
    axis_fragmentations: Optional[Tuple[int, ...]]
    replica_id: ReplicaId = 0
    prepend_axis_num: int = 0
    allow_shape_mismatch: bool = False
    flattened_range: Optional[slice] = None

    def __post_init__(self):
        self.validate_metadata_integrity()

    def validate_metadata_integrity(self) -> None:
        """Codifies the constraints on metadata attributes.

        Meeting those constraints is guaranteed when instantiating a ShardedTensor
        class with `from_rank_offsets` or `from_rank_offsets_flat` constructors.

        Returns:
            None
        """
        has_flattened_range = self.flattened_range is not None
        if self.data is not None:
            if self.data.dtype != self.dtype:
                raise CheckpointingException(
                    f'Data dtype should match `dtype` attribute for {self}'
                )
            if not has_flattened_range and self.data.shape != self.local_shape:
                raise CheckpointingException(
                    f'Data shape should match `local_shape` attribute for {self}'
                )
            if has_flattened_range:
                if self.data.ndim != 1:
                    raise CheckpointingException(f'Data should be 1D for a flattened {self}')
                real_data = self.data
                try:
                    self.data = None
                    self.init_data(device='meta')
                    if self.data.shape != real_data.shape:
                        raise CheckpointingException(
                            f'Data shape doesnt match expected {self.data.shape} for {self}'
                        )
                finally:
                    self.data = real_data

        if len(self.global_shape) != len(self.global_offset):
            raise CheckpointingException(
                f'Global offset dimensions should be equal to global shape dimensions for {self}'
            )
        if len(self.local_shape) + self.prepend_axis_num != len(self.global_shape):
            raise CheckpointingException(
                f'Local shape together with `prepend_axis_num` dimensions should be equal to global shape dimensions for {self}'
            )

        for off, sh in zip(self.global_offset[self.prepend_axis_num :], self.local_shape):
            if off % sh != 0:
                raise CheckpointingException(
                    f'Global offset ({off}) must be divisible by local shape ({sh}) for {self}.'
                )

        if has_flattened_range and self.flattened_range.step is not None:
            raise CheckpointingException(
                f'`step` argument in the flattened range of a ShardedTensor is not supported.'
            )

    def global_slice(self) -> Tuple[Union[int, slice], ...]:
        assert len(self.global_offset) == len(self.local_shape) + self.prepend_axis_num
        return tuple(
            chain(
                (off for off in self.global_offset[: self.prepend_axis_num]),
                (
                    slice(off, off + sh)
                    for off, sh in zip(
                        self.global_offset[self.prepend_axis_num :], self.local_shape
                    )
                ),
            )
        )

    def global_coordinates(self) -> Tuple[np.ndarray, ...]:
        if self.flattened_range is None:
            raise CheckpointingException(
                f'`global_coordinates` is undefined for'
                f' {self.__class__.__name__} without `flattened_range`'
            )

        local_coords = self.local_coordinates()
        assert len(local_coords) + self.prepend_axis_num == len(self.global_offset), (
            len(local_coords),
            self,
        )
        global_coords = tuple(
            c + off
            for c, off in zip((0,) * self.prepend_axis_num + local_coords, self.global_offset)
        )
        return global_coords

    def local_coordinates(self) -> Tuple[np.ndarray, ...]:
        if self.flattened_range is None:
            raise CheckpointingException(
                f'`local_coordinates` is undefined for'
                f' {self.__class__.__name__} without `flattened_range`'
            )

        # TODO: np.unravel_index?
        mask = np.zeros(np.product(self.local_shape), dtype=bool)
        mask[self.flattened_range] = True
        return np.nonzero(mask.reshape(self.local_shape))

    def local_chunk_offset_in_global(self) -> Tuple[int, ...]:
        """Offset of a local chunk in a global array of chunks.

        Returns:
            Tuple[int, ...]: the offset of the whole local chunk in a global array of chunks.
        """
        assert len(self.global_offset) == len(self.local_shape) + self.prepend_axis_num
        chunk_offset = list(self.global_offset[: self.prepend_axis_num])
        for off, sh in zip(self.global_offset[self.prepend_axis_num :], self.local_shape):
            assert off % sh == 0, str(self)
            chunk_offset.append(off // sh)
        return tuple(chunk_offset)

    def max_allowed_chunks(self) -> Tuple[int, ...]:
        chunks = []
        for axis_sh, axis_fragm in zip(self.global_shape, self.axis_fragmentations):
            if not self.allow_shape_mismatch and axis_sh % axis_fragm != 0:
                raise CheckpointingException(
                    f'Axis shape ({axis_sh}) not divisible by axis fragmentation ({axis_fragm}'
                )
            axis_chunk_size = axis_sh // axis_fragm
            chunks.append(axis_chunk_size)
        return tuple(chunks)

    def without_data(self):
        return replace(self, data=None)

    @classmethod
    def from_rank_offsets(
        cls,
        key: str,
        data: torch.Tensor,
        *rank_offsets: Tuple[int, int, int],
        replica_id: ReplicaId = 0,
        prepend_axis_num: int = 0,
        flattened_range: None = None,
        **init_kwargs,
    ):
        """Allows to construct the ShardedTensor given offset specified in process ranks.

        Args:
            key (str): unique key
            data (torch.Tensor): local tensor data
            rank_offsets (Tuple[int, int, int]): each tuple (axis, axis_rank_offset, axis_fragm) says that if global tensor is divided into `axis_fragm` fragment along `axis` axis, then local tensor data corresponds to the `axis_rank_offset` chunk.
            replica_id (ReplicaId): see ShardedTensor
            prepend_axis_num (int): see ShardedTensor
            flattened_range (None): must be None when using this constructor
            init_kwargs: passed to ShardedTensor.__init__
        """
        if flattened_range is not None:
            raise ValueError(
                'Cannot instantiate a flat ShardedTensor with `from_rank_offsets` method.'
                ' Use `from_rank_offsets_flat` instead'
            )
        global_offset = [0] * (data.ndim + prepend_axis_num)
        global_shape = ([1] * prepend_axis_num) + list(data.shape)
        axis_fragmentations = [1] * (data.ndim + prepend_axis_num)
        _seen_axis = set()
        for axis, axis_rank_offset, axis_fragm in rank_offsets:
            assert axis >= 0 and axis_rank_offset >= 0 and axis_fragm >= 0, (
                axis,
                axis_rank_offset,
                axis_fragm,
            )
            assert (
                axis_rank_offset < axis_fragm
            ), 'Rank offset must be lower than axis fragmentation'
            if axis in _seen_axis:
                raise CheckpointingException('Duplicated axis specified')
            _seen_axis.add(axis)

            local_axis_shape = 1 if axis < prepend_axis_num else data.shape[axis - prepend_axis_num]
            global_shape[axis] = axis_fragm * local_axis_shape
            global_offset[axis] = axis_rank_offset * local_axis_shape
            axis_fragmentations[axis] = axis_fragm

        return cls(
            key,
            data,
            data.dtype,
            tuple(data.shape),
            tuple(global_shape),
            tuple(global_offset),
            tuple(axis_fragmentations),
            replica_id,
            prepend_axis_num,
            flattened_range=flattened_range,
            **init_kwargs,
        )

    @classmethod
    def from_rank_offsets_flat(
        cls,
        key: str,
        data: torch.Tensor,
        non_flat_local_shape: Tuple[int, ...],
        *args,
        flattened_range: Optional[slice] = None,
        **kwargs,
    ):
        """Allows to construct a *flattened* ShardedTensor given offset specified in process ranks.

        Args:
            key (str):
            data (torch.Tensor): this should be a flattened data tensor
            non_flat_local_shape (Tuple[int, ...]): expected local shape of a non-flat chunk
            *args: passed unchanged to the `from_rank_offsets` constructor
            flattened_range (slice): see ShardedTensor. Defaults to None, but must be set to
                a non-None slice.
            **kwargs:

        Returns:
            ShardedTensor: constructed ShardedTensor instance
        """
        if flattened_range is None:
            raise CheckpointingException(
                'Cannot instantiate a non-flat ShardedTensor with `from_rank_offsets_flat` method.'
                ' Use `from_rank_offsets` instead'
            )
        if data.ndim != 1:
            raise CheckpointingException(
                f'Flattened ShardedTensor requires 1D data, got shape: {data.shape}'
            )
        if flattened_range.stop - flattened_range.start != data.numel():
            raise CheckpointingException(
                f'Flattened ShardedTensor data length ({data.numel()}) must meet the slice length: {flattened_range.stop - flattened_range.start}'
            )

        non_flat_data_meta = torch.empty(*non_flat_local_shape, dtype=data.dtype, device='meta')
        sh_ten = cls.from_rank_offsets(key, non_flat_data_meta, *args, **kwargs)
        instance = replace(sh_ten, data=data, flattened_range=flattened_range)
        instance.validate_metadata_integrity()
        return instance

    def init_data(self, device: Union[str, torch.device], init_fn=torch.empty):
        if self.data is not None:
            return
        self.data = init_fn(self.local_shape, dtype=self.dtype, device=device)
        if self.flattened_range is not None:
            self.data = self.data.flatten()[self.flattened_range.start : self.flattened_range.stop]

    def __str__(self):
        return f'{self.__class__.__name__}(key=\'{self.key}\')'


def is_main_replica(replica_id: ReplicaId):
    """ Checks if given `replica_id` is considered as main.

    "Main" replica is:
    - integer 0
    - or an iterable with all 0 elements

    It is the application responsibility to set correct replicas for sharded tensors.

    Args:
        replica_id (Union[int, Tuple[int, ...]]): replica id

    Returns:
        (bool): True for a "main" replica
    """
    if isinstance(replica_id, int):
        return replica_id == 0
    return all(r == 0 for r in replica_id)


class LocalNonpersitentObject:
    """Object that should not be stored in a checkpoint, but restored locally.

    Wrapping any object inside the state dict with LocalNonpersitentObject
    will result in:
    - during saving, this object will *not* be stored in the checkpoint
    - during loading, a local version of this object will be placed in a state dict
    """

    def __init__(self, obj):
        self.obj = obj

    def unwrap(self):
        return self.obj


@dataclass
class ShardedObject(ShardedBase):
    """Represents a mapping between a local object and a global object.

    Global object is assumed to consist of many local objects distributed
    between different processes.

    NOTE: Contrary to ShardedTensor, it's impossible to change global object
    sharding. Conceptually, ShardedObject is a fully-sharded ShardedTensor
    with atomic arbitrary typed elements.

    Args:
        key: unique identifier of a global tensor
        data: local object data. Can be None only for consistency validation
        global_shape: global object shape
        global_offset: offset of a local object in a global object, specified in number of shards
        replica_id: indicates local object replication wrt. local objects in different processes
    """

    key: str
    data: object
    global_shape: Tuple[int, ...]
    global_offset: Tuple[int, ...]
    replica_id: ReplicaId = 0

    def __post_init__(self):
        self.validate_metadata_integrity()

    def validate_metadata_integrity(self):
        if len(self.global_shape) != len(self.global_offset):
            raise CheckpointingException(
                f'Global offset dimensions should be equal to global shape dimensions for {self}'
            )

    def without_data(self):
        return replace(self, data=None)

    @property
    def unique_key(self):
        return f'{self.key}/shard_{".".join(map(str, self.global_offset))}_{".".join(map(str, self.global_shape))}'

    def __str__(self):
        return f'{self.__class__.__name__}(key=\'{self.key}\')'


@dataclass
class ShardedTensorFactory(ShardedBase):
    """ Allows to apply transformations to tensors before/after serialization.

    The essence of those transformations is that they can be applied to
    optimizer states the same way they are applied to the model params.
    The ultimate state dict with sharded tensors must depend functionally on
    `build_fn` arguments (key, data, replica_id, flattened_range),
    which will be provided by the optimizer.

    Builder creates a sub-state-dict out of a tensor before saving, and merger
    merges the corresponding state dict after loading.

    Args:
        key (str): unique identifier of the factory
        data (torch.Tensor): original model parameter that will be further transformed by this factory
        build_fn (callable): function that transforms the original tensor to a sharded state dict
        merge_fn (callable): function that transforms loaded subtree back into a single tensor (inverse of `build_fn`)
        replica_id (ReplicaId): indicates factory replication wrt. factories in different processes
        flattened_range (slice, optional): indicates additional flattening applied to the ShardedTensors produced by the factory
    """

    key: str
    data: torch.Tensor
    build_fn: Callable[[str, torch.Tensor, ReplicaId, Optional[slice]], ShardedStateDict]
    merge_fn: Callable[[StateDict], torch.Tensor]
    replica_id: ReplicaId = 0
    flattened_range: Optional[slice] = None

    def build(self):
        return self.build_fn(self.key, self.data, self.replica_id, self.flattened_range)

    def validate_metadata_integrity(self):
        """No reasonable checks can be applied"""
        pass


def apply_factories(sharded_state_dict: ShardedStateDict):
    """ Turn ShardedTensorFactories into ShardedTensors *in-place*.

    Args:
        sharded_state_dict (ShardedStateDict): state dict possibly containing ShardedTensorFactory objects

    Returns:
        None: state dict is modified in place
    """

    def apply(x):
        if isinstance(x, ShardedTensorFactory):
            x = x.build()
        return x

    dict_list_map_inplace(apply, sharded_state_dict)


def apply_factory_merges(
    x1: StateDict, x2: ShardedStateDict, key: Tuple[str, ...] = ()
) -> StateDict:
    """ Apply merges defined by ShardedTensorFactories *in-place*.

    Args:
        x1 (StateDict): state dict loaded from the checkpoint
        x2 (ShardedStateDict): subset of `x1` (in terms of dict keys) with ShardedTensorFactory
            as (possibly nested) values that define how to merge objects from the `x1` state dict
        key (Tuple[str, ...]): current key in a recursive call. Used only for reporting meaningful errors

    Returns:
        StateDict: `x1` modified in-place
    """
    if isinstance(x2, ShardedTensorFactory):
        return x2.merge_fn(x1)

    # There rest is almost the same as the `merge` function from `dict_utils`
    if isinstance(x1, dict) and isinstance(x2, dict):
        for k, v2 in x2.items():
            if k not in x1:
                raise ValueError(
                    f'Different dict keys encountered in `apply_factory_merges` ({x1.keys()} vs {x2.keys()})'
                )
            else:
                x1[k] = apply_factory_merges(x1[k], v2, key=key + (k,))
    elif isinstance(x1, list) and isinstance(x2, list):
        if len(x1) != len(x2):
            err_msg = f'Cannot merge two lists with different lengths ({len(x1)} and {len(x2)}, encountered at key {key})'
            logger.error(err_msg + f'\nx1: {x1}\nx2: {x2}')
            raise ValueError(err_msg)
        for i, v2 in enumerate(x2):
            x1[i] = apply_factory_merges(x1[i], v2, key=key + (i,))
    elif isinstance(x1, list) and isinstance(x2, dict):
        for k, v2 in x2.items():
            if not isinstance(k, int):
                raise ValueError(
                    f'Invalid dict key {k} non-integer type encountered in a list-dict merge at level {key}'
                )
            if k >= len(x1):
                raise ValueError(
                    f'Dict key {k} out of bound for list of length {len(x1)} (encountered at level {key})'
                )
            x1[k] = apply_factory_merges(x1[k], v2, key=key + (k,))
    else:
        raise ValueError(
            f'Duplicate non-dict and non-list values encountered: `{x1}` and `{x2} (at key {key})`'
        )
    return x1