llama2_7b.sh 3.25 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/bin/bash

# Runs the "7B" parameter model
export HSA_FORCE_FINE_GRAIN_PCIE=1
export OMP_NUM_THREADS=1
export NCCL_P2P_LEVEL=5
source /opt/dtk/env.sh

#export HIP_DIRECT_DISPATCH=0

#export GPU_FLUSH_ON_EXECUTION=1

#export HIP_ALLOC_INITIALIZE=0
#export GPU_MAX_HW_QUEUES=20
export NCCL_ALGO=Ring
export NCCL_NCHANNELS_PER_PEER=16
export NCCL_MIN_NCHANNELS=16
export NCCL_MIN_P2P_NCHANNELS=16
export NCCL_IB_TIMEOUT=22
export CUDA_DEVICE_MAX_CONNECTIONS=1

export NCCL_IB_HCA=mlx5_1,mlx5_2
#export NCCL_SOCKET_IFNAME=ibs8
export NCCL_NET_GDR_LEVEL=SYS
#export NCCL_NET_GDR_READ=0
export NCCL_DEBUG=info

#export FLASH_ATTENTION_PRINT_PARAM=1
lrank=$OMPI_COMM_WORLD_LOCAL_RANK
RANK=$OMPI_COMM_WORLD_RANK
WORLD_SIZE=$OMPI_COMM_WORLD_SIZE

CHECKPOINT_PATH=./tmp_7b #$1 #<Specify path>
TENSORBOARD_LOGS_PATH=./tmp_7b  #$2 #<Specify path>
DATA_PATH="./dataset/my-llama_text_document" #<Specify path and file prefix>_text_document
TOKENIZER_PATH="./tokenizer.model"

GPT_MODEL_ARGS=(
    --num-layers 32 
    --hidden-size 4096
    --num-attention-heads 32
    --ffn-hidden-size 11008
    --seq-length 4096 
    --max-position-embeddings 4096
)

TRAINING_ARGS=(
    --log-throughput
    --transformer-impl local
    --use-legacy-models 
    --micro-batch-size 1 
    --global-batch-size 64
    --train-iters 1000 
    --weight-decay 0.1 
    --adam-beta1 0.9 
    --adam-beta2 0.95 
    --init-method-std 0.006 
    --clip-grad 1.0 
    --bf16
    --recompute-activations
    --use-flash-attn-triton
    --optimizer adam
    --use-distributed-optimizer
    --ddp-average-in-collective
    --overlap-grad-reduce
    --disable-bias-linear
    --attention-dropout 0
    --hidden-dropout 0
    --no-gradient-accumulation-fusion
    --swiglu
    --lr 3.0e-5 
    --lr-decay-style cosine 
    --min-lr 3.0e-6
    --lr-warmup-iters 1
)

MODEL_PARALLEL_ARGS=(
        --sequence-parallel
	--tensor-model-parallel-size 1
	--pipeline-model-parallel-size 2
)
#--sequence-parallel
DATA_ARGS=(
    --data-path $DATA_PATH 
    --split 949,50,1
    --untie-embeddings-and-output-weights
    --use-rotary-position-embeddings 
    --normalization RMSNorm 
    --no-position-embedding 
    --tokenizer-model $TOKENIZER_PATH 
    --tokenizer-type Llama2Tokenizer
)

EVAL_AND_LOGGING_ARGS=(
    --log-interval 1
    --log-throughput
    --save-interval 10000 
    --eval-interval 1000 
    --save $CHECKPOINT_PATH 
    --load $CHECKPOINT_PATH 
    --eval-iters 1000
    --tensorboard-dir $TENSORBOARD_LOGS_PATH 
)

APP="python3  -u pretrain_gpt.py \
     ${GPT_MODEL_ARGS[@]} \
     ${TRAINING_ARGS[@]} \
     ${MODEL_PARALLEL_ARGS[@]} \
     ${DATA_ARGS[@]} \
     ${EVAL_AND_LOGGING_ARGS[@]}
     --rank ${RANK} \
     --world_size ${WORLD_SIZE} \
     --dist_url tcp://${1}:34566 \
    "


case ${lrank} in
[0])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  ${APP}
  ;;
[1])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  ${APP}
  ;;
[2])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  ${APP}
  ;;
[3])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  ${APP}
  ;;
[4])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  ${APP}
  ;;
[5])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  ${APP}
  ;;
[6])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  ${APP}
  ;;
[7])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  ${APP}
  ;;
esac