train.py 11.4 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
"""Pretrain or SFT multimodal."""
from copy import deepcopy
from functools import partial
import os
import sys

import torch

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
                                             os.path.pardir, os.path.pardir)))

from megatron.training import get_args, get_timers, get_tokenizer, print_rank_0
from megatron.training.arguments import core_transformer_config_from_args
from megatron.core import mpu, tensor_parallel
from megatron.core.enums import ModelType
from config import get_language_model_config, get_vision_model_config, get_vision_projection_config
from megatron.core.models.multimodal.llava_model import LLaVAModel
from layer_specs import get_layer_spec, get_mlp_module_spec, get_layer_spec_te
from megatron.training import pretrain
from megatron.training.utils import average_losses_across_data_parallel_group
from dataloader_provider import train_valid_test_dataloaders_provider


def model_provider(pre_process=True, post_process=True, parallel_output=True) -> LLaVAModel:
    """Builds the model.

    Args:
        pre_process (bool): Enable preprocessing in the model. NOTE: Not used at the moment.
        post_process (bool): Enable postprocessing in the model. NOTE: Not used at the moment.
        parallel_output (bool): Enable parallel model output.

    Returns:
        model: A multimodal model.
    """
    args = get_args()

    use_te = args.use_te

    print_rank_0('building a multimodal model ...')

    base_config = core_transformer_config_from_args(get_args())
    base_config.language_model_type = args.language_model_type

    language_config = deepcopy(base_config)
    language_config = get_language_model_config(language_config)

    if use_te:
        language_transformer_layer_spec = get_layer_spec_te(is_vit=False)
    else:
        language_transformer_layer_spec = get_layer_spec(is_vit=False)

    vision_config = deepcopy(base_config)
    vision_config = get_vision_model_config(vision_config, apply_query_key_layer_scaling=use_te)

    if use_te:
        vision_transformer_layer_spec = get_layer_spec_te(is_vit=True)
    else:
        vision_transformer_layer_spec = get_layer_spec(is_vit=True)

    vision_projection_config = deepcopy(base_config)
    vision_projection_config = get_vision_projection_config(vision_projection_config, language_config.hidden_size)
    vision_projection_layer_spec = get_mlp_module_spec(use_te=use_te).submodules

    model = LLaVAModel(
        language_transformer_config=language_config,
        language_transformer_layer_spec=language_transformer_layer_spec,
        language_vocab_size=args.padded_vocab_size,
        language_max_sequence_length=args.max_position_embeddings,
        vision_transformer_config=vision_config,
        vision_transformer_layer_spec=vision_transformer_layer_spec,
        drop_vision_class_token=args.disable_vision_class_token,
        vision_projection_config=vision_projection_config,
        vision_projection_layer_spec=vision_projection_layer_spec,
        vision_projection_type="mlp",
        allow_missing_vision_projection_checkpoint=args.allow_missing_vision_projection_checkpoint,
        parallel_output=parallel_output,
        language_position_embedding_type=args.position_embedding_type,
        language_rotary_percent=args.rotary_percent,
    )

    model.freeze(freeze_language_model=args.freeze_LM, freeze_vision_model=args.freeze_ViT, freeze_vision_projection=False)

    return model


def get_batch(data_iterator):
    """Generate a batch"""

    args = get_args()

    tokens = None
    labels = None
    loss_mask = None
    attention_mask = None
    position_ids = None

    # Broadcast data.
    torch.cuda.nvtx.range_push("get_data")
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None

    data_text = tensor_parallel.broadcast_data(["text"], data, torch.int64)["text"]
    data_img = tensor_parallel.broadcast_data(["img"], data, torch.float32)
    prompt_len = tensor_parallel.broadcast_data(["prompt_len"], data, torch.int64)["prompt_len"]

    torch.cuda.nvtx.range_pop()

    tokens_ = data_text.long()

    img_raw = data_img['img'].reshape(-1, 3, args.img_h, args.img_w)

    torch.cuda.nvtx.range_push("index tokens")
    tokenizer = get_tokenizer()
    tokens = tokens_[:, :args.seq_length].contiguous()
    labels = tokens_[:, 1:args.seq_length+1].contiguous()

    torch.cuda.nvtx.range_pop()

    torch.cuda.nvtx.range_push("get_ltor_masks_and_position_ids")
    attention_mask, loss_mask, position_ids = \
        get_ltor_masks_and_position_ids(tokens, tokenizer.eod,
                                        args.reset_position_ids,
                                        args.reset_attention_mask,
                                        args.eod_mask_loss,
                                        question_length=prompt_len)
    torch.cuda.nvtx.range_pop()

    loss_mask, labels, attention_mask = _preprocess_data_for_llava(loss_mask, labels, attention_mask)

    tokens = tokens[:, 1:]  # drop image index token

    return tokens, labels, loss_mask, attention_mask, position_ids, img_raw


def get_image_token_count():
    args = get_args()

    add_class_token = not args.disable_vision_class_token

    num_patches_per_dim_h = args.img_h // args.patch_dim
    num_patches_per_dim_w = args.img_w // args.patch_dim
    num_patches = num_patches_per_dim_h * num_patches_per_dim_w
    num_image_tokens = num_patches + (1 if add_class_token else 0)

    return num_image_tokens


def _preprocess_data_for_llava(loss_mask, labels, attention_mask):
    """Preprocess data sample to the format expected by a LLaVA model."""
    num_image_tokens = get_image_token_count()

    batch_size = loss_mask.shape[0]

    loss_mask2 = torch.cat(
        [torch.zeros(batch_size, num_image_tokens - 1, dtype=torch.float32, device=loss_mask.device), loss_mask], dim=1
    )
    labels2 = torch.cat([torch.zeros(batch_size, num_image_tokens - 1, dtype=torch.int64, device=labels.device), labels], dim=1)

    full_seq_length = len(labels2[0])
    attention_mask2 = torch.tril(torch.ones((1, 1, full_seq_length, full_seq_length), device=attention_mask.device))
    attention_mask2 = attention_mask2 < 0.5

    return loss_mask2, labels2, attention_mask2


def get_ltor_masks_and_position_ids(data,
                                    eod_token,
                                    reset_position_ids,
                                    reset_attention_mask,
                                    eod_mask_loss,
                                    question_length=None,
                                    weights=None):
    """Build masks and position id for left to right model."""

    # Extract batch size and sequence length.
    micro_batch_size, seq_length = data.size()

    # Attention mask (lower triangular).
    if reset_attention_mask:
        att_mask_batch = micro_batch_size
    else:
        att_mask_batch = 1
    attention_mask = torch.tril(torch.ones(
        (att_mask_batch, seq_length, seq_length), device=data.device)).view(
            att_mask_batch, 1, seq_length, seq_length)

    # Loss mask.
    loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
    if eod_mask_loss:
        loss_mask[data == eod_token] = 0.0

    # Position ids.
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=data.device)
    position_ids = position_ids.unsqueeze(0).expand_as(data)
    # We need to clone as the ids will be modifed based on batch index.
    if reset_position_ids:
        position_ids = position_ids.clone()


    if question_length is not None:
        for b in range(micro_batch_size):
            loss_mask[b, :max(0, question_length[b].item() - 1)] = 0.0

    if reset_position_ids or reset_attention_mask:
        # Loop through the batches:
        for b in range(micro_batch_size):

            # Find indecies where EOD token is.
            eod_index = position_ids[b, data[b] == eod_token]
            # Detach indecies from positions if going to modify positions.
            if reset_position_ids:
                eod_index = eod_index.clone()

            # Loop through EOD indecies:
            prev_index = 0
            for j in range(eod_index.size()[0]):
                i = eod_index[j]
                # Mask attention loss.
                if reset_attention_mask:
                    attention_mask[b, 0, (i + 1):, :(i + 1)] = 0
                # Reset positions.
                if reset_position_ids:
                    position_ids[b, (i + 1):] -= (i + 1 - prev_index)
                    prev_index = i + 1

    # Convert attention mask to binary:
    attention_mask = (attention_mask < 0.5)
    if weights is not None:
        loss_mask = loss_mask * weights

    return attention_mask, loss_mask, position_ids


def loss_func(loss_mask, output_tensor):
    losses = output_tensor.float()
    if loss_mask is not None:
        loss_mask = loss_mask.view(-1).float()
        loss = torch.sum(losses.view(-1) * loss_mask) / max( 1,loss_mask.sum() )
    else:
        loss = torch.mean(losses)

    # Reduce loss for logging.
    averaged_loss = average_losses_across_data_parallel_group([loss])

    return loss, {'lm loss': averaged_loss[0]}



def forward_step(data_iterator, model: LLaVAModel):
    """Forward training step.

    Args:
        data_iterator (torch.utils.data.dataloader): Input data iterator
        model: Multimodal model

    Returns:
        output_tensor (torch.Tensor): Loss of shape [b, s] if labels are provided, otherwise logits of shape [b, s, vocab_size].
        loss_func (callable): Loss function with a loss mask specified.
    """
    timers = get_timers()

    # Get the batch.
    timers('batch-generator', log_level=2).start()
    tokens, labels, loss_mask, attention_mask, position_ids, images = get_batch(data_iterator)
    timers('batch-generator').stop()

    output_tensor = model(images, tokens, position_ids, attention_mask, labels=labels)

    return output_tensor, partial(loss_func, loss_mask)

def add_multimodal_extra_args(parser):
    """Extra arguments."""
    group = parser.add_argument_group(title='multimodal arguments')
    group.add_argument('--valid-path', nargs='*', default=None,
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
    group.add_argument('--dataset-config', type=str, default=None)
    group.add_argument("--prompt-path", type=str, default=None)
    group.add_argument('--freeze-LM', action='store_true', default=False)
    group.add_argument('--freeze-ViT', action='store_true', default=False)
    group.add_argument('--language-model-type', type=str, required=True)
    group.add_argument("--disable-vision-class-token", action="store_true", default=False)
    group.add_argument("--allow-missing-vision-projection-checkpoint", action="store_true", default=False)
    group.add_argument("--use-te", action="store_true", default=False)
    return parser


if __name__ == "__main__":
    train_valid_test_dataloaders_provider.is_distributed = True

    pretrain(
        train_valid_test_dataloaders_provider,
        model_provider,
        ModelType.encoder_or_decoder,
        forward_step,
        args_defaults={'tokenizer_type': 'GPT2BPETokenizer'},
        extra_args_provider=add_multimodal_extra_args,
    )